Key vocabulary	Definition/Tips	Example
1. Real Life Graphs	Graphs that are supposed to model some real-life situation. The actual meaning of the values depends on the labels and units on each axis. The gradient might have a contextual meaning. The y-intercept might have a contextual meaning. The area under the graph might have a contextual meaning.	 A graph showing the cost of hiring a ladder for various numbers of days. The gradient shows the cost per day. It costs $£ 3 /$ day to hire the ladder. The y-intercept shows the additional cost/deposit/fixed charge (something not linked to how long the ladder is hired for). The additional cost is $£ 7$.
2. Conversion Graph	A line graph to convert one unit to another. Can be used to convert units (eg. miles and kilometres) or currencies (\$ and £) Find the value you know on one axis, read up/across to the conversion line and read the equivalent value from the other axis.	Conversion graph miles \longleftrightarrow kilometres
3. Depth of Water in Containers	Graphs can be used to show how the depth of water changes as different shaped containers are filled with water at a constant rate.	

Knowledge Organiser Y10 Maths Coordinates and Linear Graphs

Key Vocabulary	Definition/Tips	Example
1. Coordinates	Written in pairs. The first term is the \mathbf{x} coordinate (movement across). The second term is the y-coordinate (movement up or down)	 A: $(4,7)$ B: $(-6,-3)$
2. Midpoint of a Line	Method 1: add the \mathbf{x} coordinates and divide by 2, add the y coordinates and divide by 2 Method 2: Sketch the line and find the values half way between the two x and two y values.	Find the midpoint between $(2,1)$ and $(6,9)$ $\frac{2+6}{2}=4 \text { and } \frac{1+9}{2}=5$ So, the midpoint is $(4,5)$
3. Linear Graph	Straight line graph. The general equation of a linear graph is $y=m x+c$ where m is the gradient and c is the y-intercept. The equation of a linear graph can contain an x-term, a y-term and a number.	Example: Other examples: $\begin{aligned} & x=y \\ & y=4 \\ & x=-2 \\ & y=2 x-7 \\ & y+x=10 \\ & 2 y-4 x=12 \end{aligned}$
4. Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates. Method 2: Gradient-Intercept Method (use when the equation is in the form $y=m x+c$) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted. Method 3: Cover-Up Method (use when the equation is in the form $a x+$ $b y=c$) 1. Cover the x term and solve the resulting equation. Plot this on the $x-$ axis. 2. Cover the y term and solve the resulting equation. Plot this on the $y-$ axis.	\mathbf{x} -3 -2 -1 0 1 2 3 $\mathbf{y}=\mathbf{x + 3}$ 0 1 2 3 4 5 6$2 x+4 y=8$

	3. Draw a line through the two points plotted.	
5. Gradient	The gradient of a line is how steep it is. Gradient $=$ $\frac{\text { Change in } y}{\text { Change in } x}=\frac{\text { Rise }}{\text { Run }}$ The gradient can be positive (sloping upwards) or negative (sloping downwards)	4 $\text { Gradient }=-3 / 1=-3$
6. Finding the Equation of a Line given a point and a gradient	Substitute in the gradient (m) and point (x, y) in to the equation $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+$ c and solve for c.	Find the equation of the line with gradient 4 passing through (2,7). $\begin{gathered} y=m x+c \\ 7=4 \times 2+c \\ c=-1 \\ y=4 x-1 \end{gathered}$
7. Finding the Equation of a Line given two points	Use the two points to calculate the gradient. Then repeat the method above using the gradient and either of the points.	Find the equation of the line passing through $(6,11)$ and $(2,3)$ $\begin{gathered} m=\frac{11-3}{6-2}=2 \\ y=m x+c \\ 11=2 \times 6+c \\ c=-1 \\ y=2 x-1 \end{gathered}$
8. Parallel Lines	If two lines are parallel, they will have the same gradient. The value of m will be the same for both lines.	Are the lines $y=3 x-1$ and $2 y-$ $6 x+10=0$ parallel? Answer: Rearrange the second equation in to the form $y=m x+c$ $2 y-6 x+10=0 \rightarrow y=3 x-5$ Since the two gradients are equal (3), the lines are parallel.
9. Perpendicula r Lines	If two lines are perpendicular, the product of their gradients will always equal $\mathbf{- 1}$. The gradient of one line will be the negative reciprocal of the gradient of the other line. You may need to rearrange equations of lines to compare gradients (they need to be in the form $y=m x+c$)	Find the equation of the line perpendicular to $y=3 x+2$ which passes through $(6,5)$ Answer: As they are perpendicular, the gradient of the new line will be $-\frac{1}{3}$ as this is the negative reciprocal of 3. $\begin{array}{\|cc} & y=m x+c \\ & 5=-\frac{1}{3} \times 6+c \\ & c=7 \\ & y=-\frac{1}{3} x+7 \\ \text { Or } & 3 x+x-7=0 \end{array}$

Key Vocabulary	Definition/Tips	Example	
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down $(-)$	The size does not change, but the shape is turned around a point. Use tracing paper.
2. Column Vector			
3. Rotation			

| 6. Finding the
 Centre of
 Enlargement | Draw straight lines through
 corresponding corners of the two
 shapes.
 The centre of enlargement is the point
 where all the lines cross over.
 Be careful with negative enlargements
 as the corresponding corners will be
 the other way around. |
| :--- | :--- | :--- |
| 7. Describing
 Transformati
 ons | Give the following information when
 describing each transformation: |
| Look at the number of marks in the
 question for a hint of how many pieces
 of information are needed.
 If you are asked to describe a
 transformation', you need to say the
 name of the type of transformation
 as well as the other details. | - Translation, Vector
 - Rotation, Direction, Angle,
 Centre
 - Reflection, Equation of mirror
 line
 - Enlargement, Scale factor,
 Centre of enlargement |

Key Vocabulary	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to another part. Written using the ':' symbol.	$3: 1$
2. Proportion	Proportion compares the size of one part to the size of the whole. Usually written as a fraction.	In a class with 13 boys and 9 girls, the proportion of boys is $\frac{13}{22}$ and the proportion of girls is $\frac{9}{22}$
3. Simplifying Ratios	Divide all parts of the ratio by a common factor.	$\begin{aligned} & 5: 10=1: 2 \text { (divide both by } 5 \text {) } \\ & 14: 21=2: 3 \text { (divide both by } 7 \text {) } \end{aligned}$
4. Ratios in the form 1 : n or n : 1	Divide both parts of the ratio by one of the numbers to make one part equal 1.	$5: 7=1: \frac{7}{5}$ in the form $1: n$ $5: 7=\frac{5}{7}: 1$ in the form $n: 1$
5. Sharing in a Ratio	1. Add the total parts of the ratio. 2. Divide the amount to be shared by this value to find the value of one part. 3. Multiply this value by each part of the ratio. Use only if you know the total.	Share $£ 60$ in the ratio $3: 2: 1$. $\begin{aligned} & 3+2+1=6 \\ & 60 \div 6=10 \\ & 3 \times 10=30,2 \times 10=20,1 \times 10=10 \\ & £ 30: £ 20: £ 10 \end{aligned}$
6. Proportional Reasoning	Comparing two things using multiplicative reasoning and applying this to a new situation. Identify one multiplicative link and use this to find missing quantities.	
7. Unitary Method	Finding the value of a single unit and then finding the necessary value by multiplying the single unit value.	3 cakes require 450 g of sugar to make. Find how much sugar is needed to make 5 cakes. 3 cakes $=450 \mathrm{~g}$ So 1 cake $=150 \mathrm{~g}(\div$ by 3$)$ So 5 cakes $=750 \mathrm{~g}$ (x by 5)
8. Ratio already shared	Find what one part of the ratio is worth using the unitary method.	Money was shared in the ratio 3:2:5 between Ann, Bob and Cat. Given that Bob had $£ 16$, found out the total amount of money shared. $£ 16=2$ parts So $£ 8=1$ part $3+2+5=10$ parts, so $8 \times 10=$ £80
9. Best Buys	Find the unit cost by dividing the price by the quantity. The lowest number is the best value.	```8 cakes for £1.28->16p each (*by 8) 13 cakes for £2.05 }->15.8\mathrm{ p each (*by 13) Pack of 13 cakes is best value.```

1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage. If y is directly proportional to x, this can be written as $\boldsymbol{y} \propto \boldsymbol{x}$ An equation of the form $\boldsymbol{y}=$ $\boldsymbol{k} \boldsymbol{x}$ represents direct proportion, where k is the constant of proportionality.		
2. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage. If y is inversely proportional to x, this can be written as $\boldsymbol{y} \propto \frac{1}{x}$		

Key Vocabulary	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to another part. Written using the ':' symbol.	$3: 1$
2. Proportion	Proportion compares the size of one part to the size of the whole. Usually written as a fraction.	In a class with 13 boys and 9 girls, the proportion of boys is $\frac{13}{22}$ and the proportion of girls is $\frac{9}{22}$
3. Simplifying Ratios	Divide all parts of the ratio by a common factor.	$5: 10=1: 2$ (divide both by 5) $14: 21=2: 3$ (divide both by 7)
4. Ratios in the form 1: n or $n: 1$	Divide both parts of the ratio by one of the numbers to make one part equal 1.	$\begin{aligned} & 5: 7=1: \frac{7}{5} \text { in the form } 1: n \\ & 5: 7=\frac{5}{7}: 1 \text { in the form } n: 1 \end{aligned}$
5. Sharing in a Ratio	1. Add the total parts of the ratio. 2. Divide the amount to be shared by this value to find the value of one part. 3. Multiply this value by each part of the ratio. Use only if you know the total.	Share $£ 60$ in the ratio $3: 2: 1$. $\begin{aligned} & 3+2+1=6 \\ & 60 \div 6=10 \\ & 3 \times 10=30,2 \times 10=20,1 \times 10=10 \\ & £ 30: £ 20: £ 10 \end{aligned}$
6. Proportional Reasoning	Comparing two things using multiplicative reasoning and applying this to a new situation. Identify one multiplicative link and use this to find missing quantities.	
7. Unitary Method	Finding the value of a single unit and then finding the necessary value by multiplying the single unit value.	3 cakes require 450 g of sugar to make. Find how much sugar is needed to make 5 cakes. 3 cakes $=450 \mathrm{~g}, 1$ cake $=150 \mathrm{~g}(\div$ by 3$)$ So 5 cakes $=750 \mathrm{~g}$ (x by 5)
8. Ratio already shared	Find what one part of the ratio is worth using the unitary method.	Money was shared in the ratio 3:2:5 between Ann, Bob and Cat. Given that Bob had $£ 16$, found out the total amount of money shared. $£ 16=2$ parts So $£ 8=1$ part $3+2+5=10$ parts, so $8 \times 10=£ 80$
9. Best Buys	Find the unit cost by dividing the price by the quantity. The lowest number is the best value.	8 cakes for $£ 1.28 \rightarrow 16$ p each (\div by 8) 13 cakes for $£ 2.05 \rightarrow 15.8$ p each (\div by 13) Pack of 13 cakes is best value.

Knowledge Organiser: Right-angled triangles

Key Vocabulary	Definition/Tips	Example
1. Pythagoras' Theorem	For any right angled triangle: Used to find missing lengths. a and b are the shorter sides, c is the hypotenuse (longest side).	\quada $=y, b=8, c=10$ $a^{2}=c^{2}-b^{2}$ $y^{2}=100-64$ $y^{2}=36$ $y=6$
$2 .$ Trigonometry	The study of triangles.	
3. Hypotenuse	The longest side of a right-angled triangle. Is always opposite the right angle.	
4. Adjacent	Next to	
5. Trigonometric Formulae	Use SOHCAHTOA When finding a missing angle, use the 'inverse' trigonometric function by pressing the 'shift' button on the calculator.	Use 'Opposite' and 'Adjacent', so use 'tan' $\tan 35=\frac{x}{11}$ $x=11 \tan 35=7.70 \mathrm{~cm}$ $\begin{gathered} \cos x=\frac{5}{7} \\ x=\cos ^{-1}\left(\frac{5}{7}\right)=44.4^{\circ} \end{gathered}$ Use 'Adjacent' and 'Hypotenuse', so use 'cos'

Topic/Skill	Definition/Tips	Example
1. Probability	The likelihood/chance of something happening. Is expressed as a number between 0 (impossible) and 1 (certain). Can be expressed as a fraction, decimal, percentage or in words (likely, unlikely, even chance etc.)	
2. Probability Notation	$\mathbf{P}(\mathbf{A})$ refers to the probability that event A will occur.	P (Red Queen) refers to the probability of picking a Red Queen from a pack of cards.
3. Theoretical Probability	Number of Favourable Outcomes Total Number of Possible Outcomes	Probability of rolling a 4 on a fair 6 -sided die $=\frac{1}{6}$.
4. Relative Frequency	$\frac{\text { Number of Successful Trials }}{\text { Total Number of Trials }}$	A coin is flipped 50 times and lands on Tails 29 times. The relative frequency of getting Tails $=\frac{29}{50}$.
5. Expected Outcomes	To find the number of expected outcomes, multiply the probability by the number of trials.	The probability that a football team wins is 0.2 How many games would you expect them to win out of 40? $0.2 \times 40=8 \text { games }$
6. Exhaustive	Outcomes are exhaustive if they cover the entire range of possible outcomes. The probabilities of an exhaustive set of outcomes adds up to 1.	When rolling a six-sided die, the outcomes 1, 2, 3, 4, 5 and 6 are exhaustive, because they cover all the possible outcomes.
7. Mutually Exclusive	Events are mutually exclusive if they cannot happen at the same time. The probabilities of an exhaustive set of mutually exclusive events adds up to 1.	Examples of mutually exclusive events: - Turning left and right - Heads and Tails on a coin Examples of non mutually exclusive events: - King and Hearts from a deck of cards.
8. Frequency Tree	A diagram showing how information is categorised into various categories. The numbers at the ends of branches tells us how often something happened (frequency). The lines connected the numbers are called branches.	

16. Venn Diagrams	A Venn Diagram shows the relationship between a group of different things and how they overlap. You may be asked to shade Venn Diagrams as shown below and to the right. The Union The Intersection 'A and B'	$(A \cup B)^{\prime}$ $A \cup B^{\prime}$
17. Venn Diagram Notation	E means 'element of a set' (a value in the set) \{ \} means the collection of values in the set. ξ means the 'universal set' (all the values to consider in the question) A' means 'not in set A' (called complement) $A \cup B$ means ' A or B or both' (called Union) $A \cap B$ means ' A and B (called Intersection)	Set A is the even numbers less than 10. $A=\{2,4,6,8\}$ Set B is the prime numbers less than 10. $\begin{aligned} & B=\{2,3,5,7\} \\ & A \cup B=\{2,3,4,5,6,7,8\} \\ & A \cap B=\{2\} \end{aligned}$
18. AND rule for Probability	When two events, A and B, are independent: $P(A \text { and } B)=P(A) \times P(B)$	What is the probability of rolling a 4 and flipping a Tails? $\begin{gathered} P(4 \text { and Tails })=P(4) \times P(\text { Tails }) \\ =\frac{1}{6} \times \frac{1}{2}=\frac{1}{12} \end{gathered}$
19. OR rule for Probability	When two events, A and B, are mutually exclusive: $P(A \text { or } B)=P(A)+P(B)$	What is the probability of rolling a 2 or rolling a 5 ? $\begin{gathered} P(2 \text { or } 5)=P(2)+P(5) \\ =\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3} \end{gathered}$

Knowledge Organiser Y10 Maths F Multiplicative Reasoning

Key Vocabulary	Definition/Tips	Example
1. Metric System	A system of measures based on: the metre for length - the kilogram for mass - the second for time Length: mm, cm, m, km Mass: mg, g, kg Volume: ml, cl, 1	```1kilometres = 1000 metres 1 \text { metre = 100 centimetres} 1 centimetre = 10 millimetres 1 kilogram = 1000 grams```
2. Imperial System	A system of weights and measures originally developed in England, usually based on human quantities Length: inch, foot, yard, miles Mass: lb, ounce, stone Volume: pint, gallon	$\begin{aligned} & 1 \mathrm{lb}=16 \text { ounces } \\ & 1 \text { foot }=12 \text { inches } \\ & 1 \text { gallon }=8 \text { pints } \end{aligned}$
3. Metric and Imperial Units	Use the unitary method to convert between metric and imperial units.	5 miles ≈ 8 kilometres 1 gallon ≈ 4.5 litres 2.2 pounds ≈ 1 kilogram 1 inch $=2.5$ centimetres
4. Speed, Distance, Time	Speed $=$ Distance \div Time Distance $=$ Speed x Time Time $=$ Distance \div Speed Remember the correct units.	Speed $=4 \mathrm{mph}$ Time $=2$ hours Find the Distance. $D=S \times T=4 \times 2=8 \text { miles }$
5. Density, Mass, Volume	Density = Mass \div Volume Mass = Density x Volume Volume $=$ Mass \div Density Remember the correct units.	$\begin{aligned} & \text { Density }=8 \mathrm{~kg} / \mathrm{m}^{3} \\ & \text { Mass }=2000 \mathrm{~g} \end{aligned}$ Find the Volume. $V=M \div D=2 \div 8=0.25 \mathrm{~m}^{3}$
6. Pressure, Force, Area	Pressure $=$ Force \div Area Force $=$ Pressure x Area Area $=$ Force \div Pressure Remember the correct units.	Pressure $=10$ Pascals Area $=6 \mathrm{~cm}^{2}$ Find the Force $F=P \times A=10 \times 6=60 \mathrm{~N}$

7. Distance- Time Graphs	You can find the speed from the gradient of the line (Distance \div Time) The steeper the line, the quicker the speed. A horizontal line means the object is not moving (stationary).	Disame (km)
Calculating with percentages		

		$3000 \times 1.05^{7}=£ 4221.30$
Proportion		
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage. If y is directly proportional to x, this can be written as $\boldsymbol{y} \propto \boldsymbol{x}$ An equation of the form $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}$ represents direct proportion, where k is the constant of proportionality.	
2. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage. If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$ An equation of the form $\boldsymbol{y}=\frac{\boldsymbol{k}}{\boldsymbol{x}}$ represents inverse proportion.	

Knowledge Organiser Y10F Quadratic Equations/expressions and their graphs

Key Vocabulary	Definition/Tips	Example		
1. Quadratic	A quadratic expression is of the form $a x^{2}+b x+c$ where a, b and c are numbers, $\boldsymbol{a} \neq \mathbf{0}$	Examples of quadratic expressions: $\begin{gathered} x^{2} \\ 8 x^{2}-3 x+7 \end{gathered}$ Examples of non-quadratic expressions: $\begin{gathered} 2 x^{3}-5 x^{2} \\ 9 x-1 \\ \hline \end{gathered}$		
2. Expanding double brackets	A factorised quadratic takes the form of a pair of double brackets e.g $(x+4)(x-2)$ These can be "expanded using grid multiplication (see example)	Add tpgether all the elments, and the brackets have been fully expanded and simplified$\begin{aligned} & \quad x^{2}+4 x-2 x-8 \\ & =x^{2}+2 x-8 \end{aligned}$		
3. Factorising Quadratics	When a quadratic expression is in the form $x^{2}+b x+c$ find the two numbers that add to give \mathbf{b} and multiply to give \mathbf{c}.	$x^{2}+7 x+10=(x+5)(x+2)$ (because 5 and 2 add to give 7 and multiply to give 10) $x^{2}+2 x-8=(x+4)(x-2)$ (because +4 and -2 add to give +2 and multiply to give -8)		
4. Difference of Two Squares	An expression of the form $\boldsymbol{a}^{2}-\boldsymbol{b}^{2}$ can be factorised to give $(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{a}-\boldsymbol{b})$	$\begin{aligned} x^{2}-25 & =(x+5)(x-5) \\ 16 x^{2}-81 & =(4 x+9)(4 x-9) \end{aligned}$		
5. Quadratic Graph	A 'U-shaped' curve called a parabola. The equation is of the form $y=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$, where a, b and c are numbers, $\boldsymbol{a} \neq \mathbf{0}$. If $\boldsymbol{a}<\mathbf{0}$, the parabola is upside down.			

