Knowledge Organiser Y10 Maths Real Life Graph

Key vocabulary	Definition/Tips	Example
1. Real Life Graphs	Graphs that are supposed to model some real-life situation. The actual meaning of the values depends on the labels and units on each axis. The gradient might have a contextual meaning. The y-intercept might have a contextual meaning. The area under the graph might have a contextual meaning.	(i) is constant of the second
2. Conversion Graph	A line graph to convert one unit to another . Can be used to convert units (eg. miles and kilometres) or currencies (\$ and £) Find the value you know on one axis, read up/across to the conversion line and read the equivalent value from the other axis.	Conversion graph miles \iff kilometres km 20 16 12 8 4 0 5 10 miles15 8 km = 5 miles
3. Depth of Water in Containers	Graphs can be used to show how the depth of water changes as different shaped containers are filled with water at a constant rate.	

Knowledge Organiser Y10 Maths Coordinates and Linear Graphs

Key Vocabulary	Definition/Tips	Example
1. Coordinates	Written in pairs . The first term is the x - coordinate (movement across). The second term is the y -coordinate (movement up or down)	A: (4,7) B: (-6,-3) B: (-6,-3) B: (-6,-3) B: (-6,-3)
2. Midpoint of a Line	Method 1: add the x coordinates and divide by 2, add the y coordinates and divide by 2 Method 2: Sketch the line and find the values half way between the two x and	Find the midpoint between (2,1) and (6,9) $\frac{2+6}{2} = 4 \text{ and } \frac{1+9}{2} = 5$
	two y values.	So, the midpoint is (4,5)
3. Linear Graph	Straight line graph. The general equation of a linear graph is y = mx + c where <i>m</i> is the gradient and <i>c</i> is the	Example: Other examples: x = y y = 4 x = -2
	y-intercept . The equation of a linear graph can contain an x-term , a y-term and a number .	y = 2x - 7 y + x = 10 2y - 4x = 12
4. Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates. Method 2: Gradient-Intercept Method (use when the equation is in the form y = mx + c) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted. Method 3: Cover-Up Method (use when the equation is in the form $ax + by = c$) 1. Cover the <i>x</i> term and solve the resulting equation. Plot this on the $x - axis$. 2. Cover the <i>y</i> term and solve the resulting equation. Plot this on the $y - axis$.	x -3 -2 -1 0 1 2 3 y = x +3 0 1 2 3 4 5 6 y = $\frac{3}{2}x + 1$ y = $\frac{3}{2}x + 1$ y = $\frac{3}{2}x + 1$ y = $\frac{2}{3}$ x + 1 + 2 + 2 + 4y = 8

	3. Draw a line through the two points plotted.	
5. Gradient	The gradient of a line is how steep it is.	Gradient = $4/2 = 2$
	Gradient =	
	Change in y Rise	4
	$\overline{Change \text{ in } x} = \overline{Run}$	-3
	_	2
	The gradient can be positive (sloping	
	upwards) or negative (sloping downwards)	
6. Finding the	Substitute in the gradient (m) and	Find the equation of the line with
Equation of a	point (x,y) in to the equation $y = mx + mx$	gradient 4 passing through (2,7).
Line <u>given a</u>	c and solve for c.	y = mx + c
point and a		$7 = 4 \times 2 + c$ $c = -1$
<u>gradient</u>		c = -1 $y = 4x - 1$
7. Finding the	Use the two points to calculate the	Find the equation of the line
Equation of a	gradient. Then repeat the method	passing through (6,11) and (2,3)
Line <u>given</u>	above using the gradient and either of	
two points	the points.	$m = \frac{11 - 3}{6 - 2} = 2$
		y = mx + c
		$11 = 2 \times 6 + c$
		c = -1
8. Parallel	If two lines are parallel , they will have	y = 2x - 1 Are the lines $y = 3x - 1$ and $2y - 1$
Lines	the same gradient. The value of m will	6x + 10 = 0 parallel?
	be the same for both lines.	Answer:
		Rearrange the second equation in
		to the form $y = mx + c$
		$2y - 6x + 10 = 0 \rightarrow y = 3x - 5$
		Since the two gradients are equal
9.	If two lines are normandiaular, the	(3), the lines are parallel.
9. Perpendicula	If two lines are perpendicular , the product of their gradients will always	Find the equation of the line perpendicular to $y = 3x + 2$ which
r Lines	equal -1.	passes through $(6,5)$
	The gradient of one line will be the	Answer:
	negative reciprocal of the gradient of	As they are perpendicular, the
	the other line.	gradient of the new line will be $-\frac{1}{3}$
		as this is the negative reciprocal of
	You may need to rearrange equations of lines to compare gradients (they	3.
	need to be in the form $y = mx + c$)	y = mx + c
		y = mx + c $5 = -\frac{1}{3} \times 6 + c$
		3
		$c = 7$ $y = -\frac{1}{3}x + 7$
		Or $3x + x - 7 = 0$

Knowledge Organiser Y10 Maths Transformations

Key Vocabulary	Definition/Tips	Example
1. Translation	Translate means to move a shape . The shape does not change size or orientation .	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{5}$ means '1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point.	Rotate Shape A 90° anti-clockwise about (0,1)
	Use tracing paper.	X' Y'
4. Reflection	The size does not change, but the shape is ' flipped' like in a mirror .	Reflect shape C in the line $y = x$
	Line $x =$? is a vertical line. Line $y =$? is a horizontal line. Line $y = x$ is a diagonal line.	
5. Enlargement	The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = 3 means '3 times larger = multiply by 3'
		Scale Factor = ½ means 'half the size = divide by 2'

6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over . Be careful with negative enlargements as the corresponding corners will be the other way around.	A to B is an enlargement SF 2 about the point (2,1)
7. Describing Transformati ons	Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details.	 Translation, Vector Rotation, Direction, Angle, Centre Reflection, Equation of mirror line Enlargement, Scale factor, Centre of enlargement

Knowledge Organisers Y10 Maths Ratio and Proportion

Key Vocabulary	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to another part . Written using the ':' symbol.	3:1
2. Proportion	Proportion compares the size of one part to the size of the whole . Usually written as a fraction.	In a class with 13 boys and 9 girls, the proportion of boys is $\frac{13}{22}$ and the proportion of girls is $\frac{9}{22}$
3. Simplifying Ratios	Divide all parts of the ratio by a common factor .	5 : 10 = 1 : 2 (divide both by 5) 14 : 21 = 2 : 3 (divide both by 7)
4. Ratios in the form 1 : <i>n</i> or <i>n</i> : 1	Divide both parts of the ratio by one of the numbers to make one part equal 1 .	5 : 7 = 1 : $\frac{7}{5}$ in the form 1 : n 5 : 7 = $\frac{5}{7}$: 1 in the form n : 1
5. Sharing in a Ratio	 Add the total parts of the ratio. Divide the amount to be shared by this value to find the value of one part. Multiply this value by each part of the ratio. Use only if you know the total. 	Share £60 in the ratio $3 : 2 : 1$. 3 + 2 + 1 = 6 $60 \div 6 = 10$ $3 \times 10 = 30, 2 \times 10 = 20, 1 \times 10 = 10$ £30 : £20 : £10
6. Proportional Reasoning	Comparing two things using multiplicative reasoning and applying this to a new situation.	30 minutes 60 pages ? minutes 150 pages
	Identify one multiplicative link and use this to find missing quantities.	× 2
7. Unitary Method	Finding the value of a single unit and then finding the necessary value by multiplying the single unit value.	3 cakes require 450g of sugar to make. Find how much sugar is needed to make 5 cakes. 3 cakes = 450g So 1 cake = 150g (÷ by 3) So 5 cakes = 750 g (x by 5)
8. Ratio already shared	Find what one part of the ratio is worth using the unitary method .	Money was shared in the ratio 3:2:5 between Ann, Bob and Cat. Given that Bob had £16, found out the total amount of money shared. $\pounds 16 = 2 \text{ parts}$ So $\pounds 8 = 1 \text{ part}$ $3 + 2 + 5 = 10 \text{ parts}$, so $8 \times 10 =$ $\pounds 80$
9. Best Buys	Find the unit cost by dividing the price by the quantity . The lowest number is the best value.	8 cakes for £1.28 → 16p each (÷by 8) 13 cakes for £2.05 → 15.8p each (÷by 13) Pack of 13 cakes is best value.

1. Direct	If two quantities are in direct proportion,	<i>V</i> ↑
Proportion	as one increases, the other	v = kx
	increases by the same percentage.	
	If y is directly proportional to x, this can	+
	be written as $y \propto x$	x
	An equation of the form $y =$	
	kx represents direct proportion, where	•
		in the second
	k is the constant of proportionality.	
2. Inverse	If two quantities are inversely	<i>Y</i> ↑.
Proportion	proportional, as one increases, the	k
	other decreases by the same	y =
	percentage.	, I
		+ + + + + + + + + + + + + + + + + + +
	If y is inversely proportional to x, this	x
	can be written as $y \propto \frac{1}{2}$	
	can be written as $y \propto \frac{-x}{x}$	
	An equation of the form $y = \frac{k}{r}$	
	represents inverse proportion.	
L		

Knowledge Organisers: Proportion

Key	Definition/Tips	Example
Vocabulary		
1. Ratio	Ratio compares the size of one part to	3:1
	another part.	
	Written using the ':' symbol.	
2. Proportion	Proportion compares the size of one part to	In a class with 13 boys and 9 girls, the
	the size of the whole .	proportion of boys is $\frac{13}{22}$ and the
	Usually written as a fraction.	proportion of girls is $\frac{5}{22}$
2 Simulifying	Divide all parts of the ratio by a common	
3. Simplifying Ratios	Divide all parts of the ratio by a common factor.	5: 10 = 1: 2 (divide both by 5) 14: 21 = 2: 2 (divide both by 7)
4. Ratios in the		14:21=2:3 (divide both by 7)
4. Kattos in the form $1 : n$ or	Divide both parts of the ratio by one of the numbers to make one part equal 1 .	$5:7 = 1:\frac{7}{5}$ in the form 1: n
n:1	numbers to make one part equal 1.	$5:7 = \frac{5}{7}:1$ in the form n : 1
5. Sharing in a	1. Add the total parts of the ratio.	Share £60 in the ratio 3 : 2 : 1.
Ratio	2. Divide the amount to be shared by this	3 + 2 + 1 = 6
	value to find the value of one part.	$60 \div 6 = 10$
	3. Multiply this value by each part of the	3 x 10 = 30, 2 x 10 = 20, 1 x 10 = 10
	ratio. Use only if you know the total.	£30 : £20 : £10
6. Proportional	Comparing two things using multiplicative	× 2
Reasoning	reasoning and applying this to a new	30 minutes 60 pages
	situation.	? minutes 150 pages
	Identify one multiplicative link and use this	
	to find missing quantities.	
7. Unitary	Finding the value of a single unit and then	3 cakes require 450g of sugar to make.
Method	finding the necessary value by multiplying	Find how much sugar is needed to
	the single unit value.	make 5 cakes.
		$3 \text{ cakes} = 450 \text{g}, 1 \text{ cake} = 150 \text{g} (\div \text{ by } 3)$
0. D. /		So 5 cakes = $750 \text{ g} (x \text{ by } 5)$
8. Ratio	Find what one part of the ratio is worth	Money was shared in the ratio 3:2:5
already shared	using the unitary method .	between Ann, Bob and Cat. Given that
		Bob had £16, found out the total
		amount of money shared. $\pounds 16 = 2$ parts
		So $\pounds 8 = 1$ part
		$3+2+5=10 \text{ parts}, \text{ so } 8 \times 10 = \text{\pounds}80$
9. Best Buys	Find the unit cost by dividing the price by	8 cakes for $\pounds 1.28 \rightarrow 16$ parts, so $6 \times 10^{-2.00}$
2. Dest Duys	the quantity.	13 cakes for $\pounds 2.05 \rightarrow 15.8p$ each (+by
	The lowest number is the best value.	13)
		Pack of 13 cakes is best value.

Knowledge Organiser: Right-angled triangles

Key Vocabulary	Definition/Tips	Example
1. Pythagoras' Theorem	For any right angled triangle: $a^2 + b^2 = c^2$ a b Used to find missing lengths. a and b are the shorter sides, c is the hypotenuse (longest side).	Finding a Shorter Side y SUBTRACT: 8 a = y, b = 8, c = 10 $a^2 = c^2 - b^2$ $y^2 = 100 - 64$ $y^2 = 36$ y = 6
2. Trigonometry	The study of triangles.	
3. Hypotenuse	The longest side of a right-angled triangle. Is always opposite the right angle.	hypoteniuse
4. Adjacent	Next to	R Adjacent
5. Trigonometric Formulae	Use SOHCAHTOA. $ sin \theta = \frac{0}{H} $ $ cos \theta = \frac{A}{H} $ $ tan \theta = \frac{0}{A} $ $ M = \frac{0}{A} $ When finding a missing angle, use the 'inverse' trigonometric function by pressing the 'shift' button on the calculator.	x Use 'Opposite' and 'Adjacent', so use 'tan' tan $35 = \frac{x}{11}$ $x = 11 \tan 35 = 7.70 cm$ 7cm Use 'Adjacent' and 'Hypotenuse', so use 'cos' $\cos x = \frac{5}{7}$ $x = cos^{-1}(\frac{5}{7}) = 44.4^{\circ}$

Knowledge Organiser Y10 Maths Probability

Topic/Skill	Definition/Tips	Example
1. Probability	The likelihood/chance of something happening. Is expressed as a number between 0 (impossible) and 1 (certain). Can be expressed as a fraction, decimal, percentage or in words (likely, unlikely, even chance etc.)	Impossible Unlikely Even Chance Likely Certain 1-in-6 Chance 4-in-5 Chance
2. Probability Notation	P(A) refers to the probability that event A will occur.	P(Red Queen) refers to the probability of picking a Red Queen from a pack of cards.
3. Theoretical Probability	Number of Favourable Outcomes Total Number of Possible Outcomes	Probability of rolling a 4 on a fair 6-sided die = $\frac{1}{6}$.
4. Relative Frequency	Number of Successful Trials Total Number of Trials	A coin is flipped 50 times and lands on Tails 29 times. The relative frequency of getting Tails = $\frac{29}{50}$.
5. Expected Outcomes	To find the number of expected outcomes, multiply the probability by the number of trials .	The probability that a football team wins is 0.2 How many games would you expect them to win out of 40? $0.2 \times 40 = 8 \text{ games}$
6. Exhaustive	Outcomes are exhaustive if they cover the entire range of possible outcomes. The probabilities of an exhaustive set of outcomes adds up to 1.	When rolling a six-sided die, the outcomes 1, 2, 3, 4, 5 and 6 are exhaustive, because they cover all the possible outcomes.
7. Mutually Exclusive	Events are mutually exclusive if they cannot happen at the same time. The probabilities of an exhaustive set of mutually exclusive events adds up to 1.	Examples of mutually exclusive events: - Turning left and right - Heads and Tails on a coin Examples of non mutually exclusive events: - King and Hearts from a deck of cards.
8. Frequency Tree	A diagram showing how information is categorised into various categories. The numbers at the ends of branches tells us how often something happened (frequency). The lines connected the numbers are called branches .	Boys Boys Boes not wear glasses Boes not wear glasses Boes not wear glasses Boes not wear glasses Boes not wear glasses

9. Sample	The set of all possible outcomes of	+ 1 2 3 4 5 6
Space	an experiment.	1 2 3 4 5 6 7
		2 3 4 5 6 7 8
		3 4 5 6 7 8 9
		4 5 6 7 8 9 10
		5 6 7 8 9 10 11
		6 7 8 9 10 11 12
10. Sample	A sample is a small selection of items	A sample could be selecting 10
	from a population.	students from a year group at
	A sample is biased if individuals or	school.
	groups from the population are not	
	represented in the sample.	
11. Sample	The larger a sample size, the closer	A sample size of 100 gives a
Size	those probabilities will be to the true	more reliable result than a
	probability.	sample size of 10.
12. Tree	Tree diagrams show all the possible	Bag A Bag B
Diagrams	outcomes of an event and calculate	1 red
	their probabilities.	1
	All branches must add up to 1 when	5 red 2 black
	adding downwards.	3 1
	This is because the probability of something not happening is 1 minus	
	the probability that it does happen.	4 Jack 3 red
	Multiply going across a tree diagram.	5 2
	Add going down a tree diagram.	- black
13.	The outcome of a previous event	An example of independent
Independent	does not influence/affect the	events could be replacing a
Events	outcome of a second event.	counter in a bag after picking it.
14.	The outcome of a previous event	An example of dependent events
Dependent	does influence/affect the outcome of	could be not replacing a counter
Events	a second event.	in a bag after picking it. ' <u>Without</u>
		replacement'
15.	P(A) refers to the probability that	P(Red Queen) refers to the
Probability	event A will occur.	probability of picking a Red
Notation	P(A') refers to the probability that	Queen from a pack of cards.
	event A will <u>not</u> occur.	P(Blue') refers to the probability
	P(A ∪ B) refers to the probability that event A or B or both will occur.	that you do not pick Blue.
	$P(A \cap B)$ refers to the probability that	P(Blonde ∪ Right Handed) refers to the probability that you pick
	both events A and B will occur.	someone who is Blonde or Right
		Handed or both.
		P(Blonde \cap Right Handed) refers
		to the probability that you pick
		someone who is both Blonde and

A Venn Diagram shows the	$A \cup B$ $A \cap B$
relationship between a group of	A B A B
different things and how they overlap.	
You may be asked to shade Venn	
Diagrams as shown below and to the	
right.	$(A \cap B)'$ $(A \cup B)'$
$A \cup B \qquad A \cap B \qquad A \cap B \qquad \zeta \qquad A \cap B \qquad C \cap B \zeta \qquad A \cap C \cap$	$A = B = A = B^{B}$
The Union The Intersection 'A or B or Both' 'A and B'	
∈ means 'element of a set' (a value in	Set A is the even numbers less
the set)	than 10.
{ } means the collection of values in the	A = {2, 4, 6, 8}
set.	Set B is the prime numbers less
	than 10.
	B = {2, 3, 5, 7}
	A ∪ B = {2, 3, 4, 5, 6, 7, 8}
• /	A ∩ B = {2}
•	
Intersection)	
When two events, A and B, are	What is the probability of rolling a
independent:	4 and flipping a Tails?
$P(A \text{ and } B) = P(A) \times P(B)$	$P(4 \text{ and } Tails) = P(4) \times P(Tails)$
	$=\frac{1}{6}\times\frac{1}{2}=\frac{1}{12}$
When two events, A and B, are	What is the probability of rolling a
mutually exclusive:	2 or rolling a 5?
P(A or B) = P(A) + P(B)	$P(2 \text{ or } 5) = P(2) + P(5)$ $= \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$
	You may be asked to shade Venn Diagrams as shown below and to the right. $A \cup B$ $A \cup B$ $A \cup B$ $A \cap B$ means of a set' (a value in the set) {} means the collection of values in the set. ξ means the collection of values in the set. ξ means the 'universal set' (all the values to consider in the question) A' means 'not in set A' (called complement) $A \cup B$ means 'A or B or both' (called Intersection) When two events, A and B, are independent: $P(A \text{ and } B) = P(A) \times P(B)$ When two events, A and B, are mutually exclusive:

Knowledge Organiser Y10 Maths F Multiplicative Reasoning

Key Vocabulary	Definition/Tips	Example
1. Metric System	A system of measures based on: - the metre for length - the kilogram for mass - the second for time Length: mm, cm, m, km Mass: mg, g, kg Volume: ml, cl, l	1kilometres = 1000 metres 1 metre = 100 centimetres 1 centimetre = 10 millimetres 1 kilogram = 1000 grams
2. Imperial System	A system of weights and measures originally developed in England, usually based on human quantities Length: inch, foot, yard, miles Mass: lb, ounce, stone Volume: pint, gallon	1lb = 16 ounces 1 foot = 12 inches 1 gallon = 8 pints
3. Metric and Imperial Units	Use the unitary method to convert between metric and imperial units.	$5 \text{ miles} \approx 8 \text{ kilometres}$ $1 \text{ gallon} \approx 4.5 \text{ litres}$ $2.2 \text{ pounds} \approx 1 \text{ kilogram}$ 1 inch = 2.5 centimetres
4. Speed, Distance, Time	Speed = Distance \div Time Distance = Speed x Time Time = Distance \div Speed	Speed = 4mph Time = 2 hours Find the Distance. $D = S \times T = 4 \times 2 = 8$ miles
5. Density, Mass, Volume	Remember the correct units. Density = Mass ÷ Volume Mass = Density x Volume Volume = Mass ÷ Density M D V Remember the correct units.	Density = 8kg/m^3 Mass = 2000g Find the Volume. $V = M \div D = 2 \div 8 = 0.25m^3$
6. Pressure, Force, Area	Pressure = Force \div Area Force = Pressure x Area Area = Force \div Pressure	Pressure = 10 Pascals Area = 6cm^2 Find the Force $F = P \times A = 10 \times 6 = 60 \text{ N}$

	1				
7. Distance- Time Graphs	You can find the speed from the gradient of the line (Distance ÷ Time) The steeper the line, the quicker the speed. A horizontal line means the object is not moving (stationary).	Distance (Km)			
Calculating wit	Calculating with percentages				
1. Increase or Decrease by a Percentage	Non-calculator: Find the percentage and add or subtract it from the original amount. Calculator: Find the percentage multiplier	$\frac{\text{Increase 500 by 20\% (Non Calc):}}{10\% \text{ of } 500 = 50}$ so 20% of 500 = 100 500 + 100 = 600			
	and multiply.	Decrease 800 by 17% (Calc): 100%-17%=83% 83% ÷ 100 = 0.83 0.83 x 800 = 664			
2. Percentage Multiplier	The number you multiply a quantity by to increase or decrease it by a percentage .	The multiplier for increasing by 12% is 1.12 The multiplier for decreasing by 12% is 0.88 The multiplier for increasing by 100% is 2.			
3. Reverse Percentage	Find the correct percentage given in the question, then work backwards to find 100% Look out for words like 'before' or 'original'	A jumper was priced at £48.60 after a 10% reduction. Find its original price. • 100% - 10% = 90% • 90% = £48.60 • 1% = £0.54 • 100% = £54			
4. Simple Interest	Interest calculated as a percentage of the original amount.	£1000 invested for 3 years at 10% simple interest. 10% of £1000 = £100 Interest = $3 \times £100 = £300$			
5. Exponential Growth	 When we multiply a number repeatedly by the same number (≠ 1), resulting in the number increasing by the same proportion each time. The original amount can grow very quickly in exponential growth. 	1, 2, 4, 8, 16, 32, 64, 128 is an example of exponential growth, because the numbers are being multiplied by 2 each time.			
6. Exponential Decay	When we multiply a number repeatedly by the same number ($0 < x < 1$), resulting in the number decreasing by the same proportion each time. The original amount can decrease very quickly in exponential decay.	1000, 200, 40, 8 is an example of exponential decay, because the numbers are being multiplied by $\frac{1}{5}$ each time.			
7. Compound Interest	Interest paid on the original amount and the accumulated interest .	A bank pays 5% compound interest a year. Bob invests £3000. How much will he have after 7 years.			

		$3000 \times 1.05^7 = \pounds 4221.30$
Proportion	· ·	
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage.If y is directly proportional to x, this can be written as $y \propto x$ An equation of the form $y = kx$ represents 	y $y = kx$
2. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage. If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$ An equation of the form $y = \frac{k}{x}$ represents inverse proportion.	$y = \frac{k}{x}$

Knowledge Organiser Y10F Quadratic Equations/expressions and their graphs

Key Vocabulary	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions: x^2
	$ax^2 + bx + c$	$8x^2 - 3x + 7$
	where a, b and c are numbers, $a \neq 0$	Examples of non-quadratic expressions: $2x^3 - 5x^2$ 9x - 1
2. Expanding double brackets	A factorised quadratic takes the form of a pair of double brackets e.g	$\begin{array}{ c c c c c }\hline & x & -2 \\ \hline x & x^2 & -2x \\ \hline \end{array}$
	(x+4)(x-2)	+4 4x -8
	These can be "expanded using grid multiplication (see example)	Add tpgether all the elments, and the brackets have been fully expanded and simplified $x^2 + 4x - 2x - 8$
		$=x^2+2x-8$
3. Factorising Quadratics	When a quadratic expression is in the form $x^2 + bx + c$ find the two numbers that add to give b and multiply to give c.	$x^{2} + 7x + 10 = (x + 5)(x + 2)$ (because 5 and 2 add to give 7 and multiply to give 10) $x^{2} + 2x - 8 = (x + 4)(x - 2)$
		(because +4 and -2 add to give +2 and multiply to give -8)
4. Difference of Two Squares	An expression of the form $a^2 - b^2$ can be factorised to give $(a + b)(a - b)$	$x^{2} - 25 = (x + 5)(x - 5)$ $16x^{2} - 81 = (4x + 9)(4x - 9)$
5. Quadratic Graph	A 'U-shaped' curve called a parabola. The equation is of the form $y = ax^2 + bx + c$, where a, b and c are numbers, $a \neq 0$. If $a < 0$, the parabola is upside down.	y ↑ y = x ² -4x-5 -1 (2, -9)