		11 Foundation Maths: Area and perimeter
Key Vocabulary	Definition/Tips	Example
1. Perimeter	The total distance around the outside of	8 cm
	a shape.	
		5 cm
	Units include: <i>mm, cm, m</i> etc.	
2. Area	The amount of space inside a shape.	P = 8 + 5 + 8 + 5 = 26cm
2. AI Ca	The amount of space inside a shape.	
	Units include: mm^2 , cm^2 , m^2	
3. Area of a	Length x Width	9 cm
Rectangle		
U		4 cm
4. Area of a	Base x Perpendicular Height	
Parallelogram	Not the slant height.	4cm 3cm
		$A = 21cm^2$
5. Area of a	Base x Height ÷ 2	
Triangle		9 4 5
		12 $A = 24cm^2$
6. Area of a Kite	Split in to two triangles and use the	
	method above.	Î Î
		2.2m
		₹¥
		$A = 8.8m^2$
7. Area of a	$\frac{(a+b)}{2} \times h$	6 cm
Trapezium	Z	
	"Half the sum of the parallel side, times	5 cm
	the height between them. That is how	16 cm
	you calculate the area of a trapezium"	
8. Compound	A shape made up of a combination of	
Shape	other known shapes put together.	
		+

Key Vocabulary	Definition/Tips	Example
1. Arc Length of a Sector	The arc length is part of the circumference.	Arc Length = $\frac{115}{360} \times \pi \times 8 = 8.03cm$
	Take the angle given as a fraction over 360° and multiply by the circumference .	
2. Area of a Sector	The area of a sector is part of the total area.	Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1 cm^2$
	Take the angle given as a fraction over 360° and multiply by the area .	
3. Surface Area of a Cylinder	Curved Surface Area = πdh or $2\pi rh$ Total SA = $2\pi r^2 + \pi dh$ or Total SA = $2\pi r^2 + 2\pi rh$	5
		$Total SA = 2\pi(2)^2 + \pi(4)(5) = 28\pi$
4. Surface Area of a Cone	Curved Surface Area = $\pi r l$ where $l = slant$ height Total SA = $\pi r l + \pi r^2$	5m
	You may need to use Pythagoras' Theorem to find the slant height	3m
5. Surface Area of	$SA = 4\pi r^2$	Total $SA = \pi(3)(5) + \pi(3)^2 = 24\pi$ Find the surface area of a sphere with
a Sphere	Look out for hemispheres – halve the SA of a sphere and add on a circle (πr^2)	radius 3cm. $SA = 4\pi(3)^2 = 36\pi cm^2$

	Knowledge Organiser Y11 Found	ation Maths: Area and perimeter of circles
Key Vocabulary	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	• • •
2. Parts of a Circle	Radius – the distance from the centre ofa circle to the edgeDiameter – the total distance across thewidth of a circle through the centre.Circumference – the total distancearound the outside of a circleChord – a straight line whose endpoints lie on a circleTangent – a straight line which touchesa circle at exactly one pointArc – a part of the circumference of acircleSector – the region of a circle enclosedby two radii and their intercepted arcSegment – the region bounded by achord and the arc created by the chord	Parts of a Circle Radius Diameter Circumference Chord Arc Tangent Chord Segment Sector
3. Circumference	${\it C}={\it \pi}{\it d}$ which means 'pi x diameter'	If the radius was 5cm, then:
of a Circle 4. Perimeter of a Semi-Circle	Perimeter of a semi-circle is the curved length (half the circumference of the circle) plus the straight length (diameter)	$C = \pi \times 10 = 31.4cm$ Curved length = $2\pi r \div 2$ = $2 \times \pi \times 16 \div 2$ = 50.265 mm Straight length = $d = 2r = 2 \times 16$ = 32 mm Total length = curved length + straight length = $50.265 + 32 = 82.3$ mm (1 d.p.)
5. Perimeter of a quarter-Circle	Perimeter of a quarter-circle is the curved length (quarter of the circumference) plus the straight length (2 radii)	r $\frac{1/4 \text{ x circumference of circle}}{r}$
6. Area of a Circle	$A = \pi r^2$ which means 'pi x radius	If the radius was 5cm, then: $A = \pi \times 5^2 = 78.5 cm^2$
7. Area of a Semi- Circle	squared'. $\frac{A=\pi r^2}{2}$ which means 'pi x radius squared all divided by 2'.	$A = \pi \times 5^{2} = 78.5 cm^{2}$ If the radius was 5cm, then: $A = \frac{\pi \times 5^{2}}{2} = 39.3 cm^{2}$
8. Area of a quarter-Circle	$\frac{A=\pi r^2}{4}$ which means 'pi x radius squared all divided by 4'.	If the radius was 5cm, then: $A = \frac{\pi \times 5^2}{4} = 19.6 \ cm^2$ If the circumference was 5cm, then:
9.Finding the Diameter from the Circumference of a Circle	$d = \frac{c}{\pi}$ which means 'circumference divided by pi'	If the circumference was 5cm, then: $d = \frac{5}{\pi} = 1.59 \text{ cm}$

10.Finding the Radius from the Area of a Circle	$r = \sqrt{\frac{A}{\pi}}$ which means 'the square root of (area divided by pi)'	If the circumference was 5cm, then: $d = \frac{5}{\pi} = 1.59 \text{ cm}$
11. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pipprox 3.14$	S-VAR p r DISTR n r +r2.2 m Not 2 Ran# EXP Ans
12. Perimeter of Compound Shapes	Find the lengths of the outside parts of the individual shapes that form the compound shape and add the lengths together.	4 cm € E S S
13. Area of Compound Shapes	Find the area for each individual shape that creates the compound shape and add the areas together.	10 mm

	Knowledge Organiser Y11 Fou	ndation Maths: Volume including cylinders
Key vocabulary	Definition/Tips	Example
1. Volume	Volume is a measure of the amount of space inside a solid shape. Units: mm^3 , cm^3 , m^3 etc.	
2. Volume of a Cube/Cuboid	V = Length imes Width imes Height V = L imes W imes H You can also use the Volume of a Prism formula for a cube/cuboid.	6 cm 3 cm 5 cm
3. Prism	A prism is a 3D shape whose cross section is the same throughout.	volume = 6 x 5 x 3 = 90 cm ³
4. Cross Section	The cross section is the shape that continues all the way through the prism.	Cross Section

5. Volume of a	V = Area of Cross Section	
Prism	×Length	
	$V = A \times L$	
		Area of Cross
		Section
		Length
6. Volume of a	$V = \pi r^2 h$. 0
Cylinder		
		5 <i>cm</i>
		_2cm
		$V = \pi(4)(5)$
		$= 62.8 cm^{3}$
	1	= 62.8cm
7. Volume of a	$V = \frac{1}{3}\pi r^2 h$	
Cone	3	
		5cm
		_2cm
		\bigcirc
		V 1 -(4)(5)
		$V = \frac{1}{3}\pi(4)(5)$
		$= 20.9 cm^{3}$
8. Volume of a	1	- 20.70m
Pyramid	$Volume = \frac{1}{3}Bh$	\wedge
r yranna	where B = area of the base	7cm
		6cm 6cm
		$V = \frac{1}{3} \times 6 \times 6 \times 7 = 84cm^3$
		$V = \frac{1}{3} \times 0 \times 0 \times 7 = 84cm$
9. Volume of a	$V = \frac{4}{3}\pi r^3$	Find the volume of a sphere with
Sphere	3	diameter 10cm.
	Look out for hemispheres – just halve	4 500-
	the volume of a sphere.	$V = \frac{4}{3}\pi(5)^3 = \frac{500\pi}{3}cm^3$
		3 3 3
10. Volume of a	A compound shape made up of a	
10. Volume of a Compound Shape	A compound shape made up of a combination of other known shapes	
10. Volume of a Compound Shape	combination of other known shapes	Area of rectangle A = 1.2×3.6
		$= 4.32 \text{ m}^2 \qquad \text{m} \qquad 1.2 \text{ m}$ Area of rectangle B = 1.2 x 1.2
	combination of other known shapes	$\begin{array}{c} = 4.32 \text{ m}^2 \\ \text{Area of rectangle B} = 1.2 \times 1.2 \\ = 1.44 \text{ m}^2 \end{array} \xrightarrow[2.4 \text{ m}]{1.2 \text{ m}} $
	combination of other known shapes	$= 4.32 \text{ m}^2 \qquad \text{m} 1.2 \text{ m}$ Area of rectangle B = 1.2 × 1.2

		oundation Maths: Fractions and reciprocals
Key Vocabulary	Definition/Tips	Example
1. Fraction	A mathematical expression representing the division of one integer by another.	$\frac{2}{7}$ is a 'proper' fraction.
	Fractions are written as two numbers separated by a horizontal line.	$\frac{9}{4}$ is an 'improper' or 'top-heavy' fraction.
2. Numerator	The top number of a fraction.	In the fraction $\frac{3}{5}$, 3 is the numerator.
3. Denominator	The bottom number of a fraction.	In the fraction $\frac{3}{5}$, 5 is the denominator.
4. Unit Fraction	A fraction where the numerator is one and the denominator is a positive integer.	$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ <i>etc</i> . are examples of unit fractions.
5. Reciprocal	The reciprocal of a number is 1 divided by the number .	The reciprocal of 5 is $\frac{1}{5}$
	The reciprocal of x is $\frac{1}{x}$	The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$, because
	When we multiply a number by its reciprocal, we get 1.	$\frac{2}{3} \times \frac{3}{2} = 1$
	This is called the 'multiplicative inverse'.	
6. Mixed Number	A number formed of both an integer part and a fraction part.	$3\frac{2}{5}$ is an example of a mixed number.
7. Simplifying	Divide the numerator and denominator	
Fractions	by the highest common factor.	$\frac{20}{45} = \frac{4}{9}$
8. Equivalent Fractions	Fractions which represent the same value .	$\frac{2}{5} = \frac{4}{10} = \frac{20}{50} = \frac{60}{150} \text{ etc.}$
9. Comparing Fractions	To compare fractions, they each need to be rewritten so that they have a	Put in to ascending order: $\frac{3}{4}$, $\frac{2}{3}$, $\frac{5}{6}$, $\frac{1}{2}$.
	common denominator.	Equivalent: $\frac{9}{12}, \frac{8}{12}, \frac{10}{12}, \frac{6}{12}$
	Ascending means smallest to biggest. Descending means biggest to smallest.	Correct order: $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}$
10. Fraction of an Amount	Divide by the bottom , times by the top	Find $\frac{2}{5}$ of £60
		$60 \div 5 = 12$ $12 \times 2 = 24$

		2 4
11. Adding or	Find the LCM of the denominators to	$\frac{2}{3} + \frac{4}{5}$
Subtracting	find a common denominator.	
Fractions		Multiples of 3: 3, 6, 9, 12, 15
	Use equivalent fractions to change each	
	fraction to the common denominator .	Multiples of 5: 5, 10, 15
	Then just add or subtract the	
	numerators and keep the denominator	LCM of 3 and 5 = 15
	the same.	
		$\frac{2}{3} = \frac{10}{15}$
		$\frac{1}{3} - \frac{1}{15}$
		$\frac{4}{4} - \frac{12}{12}$
		$\overline{5} = \overline{15}$
		10 12 22 7
		$\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}$
		15 15 15 15
12. Multiplying	Multiply the numerators together and	
Fractions	multiply the denominators together.	3 2 6 1
		$\frac{3}{8} \times \frac{2}{9} = \frac{6}{72} = \frac{1}{12}$
13. Dividing	'Keep it, Flip it, Change it – KFC'	
Fractions	Keep the first fraction the same.	$\frac{3}{4} \div \frac{5}{6} = \frac{3}{4} \times \frac{6}{5} = \frac{18}{20} = \frac{9}{10}$
	Flip the second fraction upside down.	$\frac{1}{4} \div \frac{1}{6} - \frac{1}{4} \land \frac{1}{5} - \frac{1}{20} - \frac{1}{10}$
	Change the divide to a multiply.	
	Multiply by the reciprocal of the second	
	fraction.	

Knowledge Organiser Y11 Foundation Maths: Indices and standard form

Key Vocabulary	Definition/Tips	Example
1. Square	The number you get when you multiply	1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121,
Number	a number by itself.	144, 169, 196, 225
		$9^2 = 9 \times 9 = 81$
2. Square Root	The number you multiply by itself to get	$\sqrt{36} = 6$
	another number.	
	The reverse process of squaring a	because $6 \times 6 = 36$
	number.	
3. Solutions to	Equations involving squares have two	Solve $x^2 = 25$
$x^2 =$	solutions, one positive and one	x = 5 or x = -5
	negative.	
		This can also be written as $x = \pm 5$
4. Cube Number	The number you get when you multiply	1, 8, 27, 64, 125
	a number by itself and itself again.	$2^3 = 2 \times 2 \times 2 = 8$
5. Cube Root	The number you multiply by itself and	$\sqrt[3]{125} = 5$
	itself again to get another number.	
		because $5 \times 5 \times 5 = 125$
	The reverse process of cubing a number.	

6. Powers of	The powers of a number are that number raised to various powers .	The powers of 3 are:
	-	$3^1 = 3$
		$3^2 = 9$
		$3^3 = 27$
		$3^4 = 81$ etc.
7. Multiplication	When multiplying with the same base	$7^5 \times 7^3 = 7^8$
Index Law	(number or letter), add the powers.	$a^{12} \times a = a^{13}$
		$4x^5 \times 2x^8 = 8x^{13}$
	$a^m \times a^n = a^{m+n}$	
8. Division Index	When dividing with the same base	$15^7 \div 15^4 = 15^3$
Law	(number or letter), subtract the powers .	$x^9 \div x^2 = x^7$
		$20a^{11} \div 5a^3 = 4a^8$
	$a^m \div a^n = a^{m-n}$	
9. Brackets Index	When raising a power to another power,	< 2> F 10
Laws	multiply the powers together.	$(y^2)^5 = y^{10}$
	(m\n mn	$(6^3)^4 = 6^{12}$
	$(a^m)^n = a^{mn}$	$\frac{(5x^6)^3 = 125x^{18}}{99999^0 = 1}$
10. Notable	$\begin{vmatrix} p = p^1 \\ p^0 = 1 \end{vmatrix}$	999999° = 1
Powers	1	
11. Negative Powers	A negative power performs the	1 1
POwers	reciprocal.	$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$
	$a^{-m} = \frac{1}{a^m}$	52 9
12. Fractional	The denominator of a fractional power	
Powers	acts as a 'root'.	$27^{\frac{2}{3}} = (\sqrt[3]{27})^2 = 3^2 = 9$
		$273 = (\sqrt{27})^2 = 3^2 = 9$
	The numerator of a fractional power	3 2
	acts as a normal power.	$\left(\frac{25}{16}\right)^{\frac{3}{2}} = \left(\frac{\sqrt{25}}{\sqrt{16}}\right)^3 = \left(\frac{5}{4}\right)^3 = \frac{125}{64}$
		$\left(\frac{16}{16}\right) = \left(\frac{1}{\sqrt{16}}\right) = \left(\frac{1}{4}\right) = \frac{1}{64}$
	$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$	
13. Standard	$\frac{u^{n} - (\sqrt{u})}{A \times 10^{b}}$	8400 = 8.4 x 10 ³
Form	A ^ 10	0400 - 0.4 × 10
	where $1 \le A < 10$, $b = integer$	$0.00036 = 3.6 \times 10^{-4}$
14. Multiplying	Multiply: Multiply the numbers and add	
or Dividing with	the powers.	$(1.2 \times 10^3) \times (4 \times 10^6) = 8.8 \times 10^9$
Standard Form		
	Divide: Divide the numbers and	$(4.5 \times 10^5) \div (3 \times 10^2) = 1.5 \times 10^3$
	subtract the powers.	
15. Adding or	Convert into ordinary numbers,	
Subtracting with	calculate, and then convert back into	$2.7 \times 10^4 + 4.6 \times 10^3$
Standard Form	standard form	
		= 27000 + 4600 = 31600
		$= 3.16 \times 10^4$

Key Vocabulary	Definition/Tips	Example
1. Congruent Shapes	Shapes are congruent if they are identical - same shape and same size. Shapes can be rotated or reflected but still be congruent.	
2. Congruent Triangles	 4 ways of proving that two triangles are congruent: 1. SSS (Side, Side, Side) 2. RHS (Right angle, Hypotenuse, Side) 3. SAS (Side, Angle, Side) 4. ASA (Angle, Side, Angle) or AAS 	$BC = DF$ $\angle ABC = \angle EDF$ $\angle ACB = \angle EFD$ \therefore The two triangles are
3. Similar Shapes	ASS (Angle, Side, Side) does not prove <u>congruency.</u> Shapes are similar if they are the same shape but different sizes . The matching sides must have the same proportions.	congruent by AAS.
4. Scale Factor	The ratio of corresponding sides of two similar shapes. To find a scale factor, divide a length on one shape by the corresponding length on a similar shape.	$10 \boxed{15}$ $15 \boxed{15}$ $5cale Factor = 15 \div 10 = 1.5$

Knowledge Organiser Y11 Foundation Maths: Congruence and Similarity

		Organiser Y11 Foundation Maths: Vectors
Key vocabulary	Definition/Tips	Example
1. Translation	Translate means to move a shape . The shape does not change size or orientation .	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2. Vector Notation	A vector can be written in 3 ways: A or \overrightarrow{AB} or $\begin{pmatrix} 1\\ 3 \end{pmatrix}$	
3. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3} \text{ means '2 right, 3 up'}$ $\binom{-1}{-5} \text{ means '1 left, 5 down'}$ $\overset{\text{yAxis}}{\overbrace{a}} \overset{\text{b}}{\overbrace{a}} \overset{\text{b}}{\overbrace{a}} \overset{\text{b}}{\overbrace{a}} \overset{\text{c}}{\overbrace{a}} \overset{\text{c}} \overset{\text{c}}{\overbrace{a}} \overset{\text{c}}{\overbrace{a}} \overset{\text{c}} \overset{\text{c}} \overset{\text{c}}}{$
4. Vector	A vector is a quantity represented by an arrow with both direction and magnitude . $\overrightarrow{AB} = -\overrightarrow{BA}$	$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
5. Equal Vectors	Magnitude is defined as the length of a vector. If two vectors have the same magnitude and direction , they are equal .	
6. Parallel Vectors	Parallel vectors are multiples of each other.	2 a+b and 4 a +2 b are parallel as they are multiple of each other

Key vocabulary	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols, numbers, or letters.	3x + 2 or 5y ²
2. Equation	A statement showing that two expressions are equal	2y – 17 = 15
3. Identity	An equation that is true for all values of the variables	$2x \equiv x + x$
	An identity uses the symbol: \equiv	
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= L x W
5. Changing The Subject	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y = \frac{2x - 1}{z}$ Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ X is now the subject
6. Direct Proportion	If y is directly proportional to x, this can be written as $y \propto x$ An equation of the form $y = kx$ represents direct proportion, where k is the constant of proportionality.	y $y = kx$
7. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage. If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$ An equation of the form $y = \frac{k}{x}$ represents inverse proportion.	$y = \frac{k}{x}$

Knowledge Organiser Y11 Foundation Maths: Algebra And Proportion

8. Using	Direct : $\mathbf{y} = \mathbf{k}\mathbf{x}$ or $\mathbf{y} \propto \mathbf{x}$	p is directly proportional to q.
proportionality formulae	Inverse: $y = \frac{k}{x}$ or $y \propto \frac{1}{x}$	When p = 12, q = 4.
	1. Solve to find k using the pair of values	Find p when $q = 20$.
	in the question.	1. p = kq
	2. Rewrite the equation using the k you	12 = k x 4
	have just found.	So, k = 3
	3. Substitute the other given value from the question into the equation to find	2. p = 3q
	the missing value.	3. p = 3 x 20 = 60, so p = 60
9. Direct Proportion with powers	Graphs showing direct proportion can be written in the form $y = kx^n$ Direct proportion graphs will always start at the origin.	Direct Proportion Graphs
10. Inverse Proportion with powers	Graphs showing inverse proportion can be written in the form $y = \frac{k}{x^n}$ Inverse proportion graphs will never start at the origin.	Inverse Proportion Graphs $y = \frac{2}{\pi}$ $y = \frac{1}{2\pi}$ $y = \frac{1}{2\pi}$

Knowledge Organiser Y11 Foundation Maths: Graphs

Key vocabulary	Definition/Tips	Example
1. Coordinates	Written in pairs . The first term is the x - coordinate (movement across). The second term is the y-coordinate (movement up or down)	A: (4,7) $A: (4,7)$ $B: (-6,-3)$ $B: (-6,-3)$
2. Linear Graph	Straight line graph.	Example:
	The equation of a linear graph can contain an x-term , a y-term , and a number .	Other examples: x = y y = 4 x = -2 y = 2x - 7

3. Quadratic Graph	A ' U-shaped ' curve called a parabola . The equation is of the form	y 4 y = x ² -4x-5
	$y = ax^2 + bx + c$, where a , b and c are numbers, $a \neq 0$.	
	If $a < 0$, the parabola is upside down .	-1 5 x
4. Cubic Graph	The equation is of the form $y = ax^3 + k$, where k is a number.	
5. Reciprocal Graph	The equation is of the form $y = \frac{A}{x'}$, where A is a number and $x \neq 0$. The graph has asymptotes on the x-axis and y-axis.	y = 1/x

Knowledge Organiser Y11 Foundation Maths: Equations and Lines

Key vocabulary	Definition/Tips	Example
1. Midpoint of a	Method 1: add the x coordinates and	Find the midpoint between (2,1) and
Line	divide by 2, add the y coordinates and	(6,9)
	divide by 2	2+6 1+9
	Method 2: Sketch the line and find the	$\frac{2+6}{2} = 4$ and $\frac{1+9}{2} = 5$
	values half-way between the two x and	
	two y values.	So, the midpoint is (4,5)
2. Plotting Linear	Method 1: Table of Values	
Graphs	Construct a table of values to calculate	x -3 -2 -1 0 1 2 3
	coordinates.	y= x +3 0 1 2 3 4 5 6
	coordinates.	
	Method 2: Gradient-Intercept Method	
	(use when the equation is in the form	
	y = mx + c)	$y = \frac{3}{2}x + 1$ 3
	1. Plots the y-intercept	2
	2. Using the gradient, plot a second	1/
	point.	
	3. Draw a line through the two points	
	plotted.	

	Method 3: Cover-Up Method (use when	9
	the equation is in the form $ax + by = c$)	
	1. Cover the <i>x</i> term and solve the	
	resulting equation. Plot this on the x –	$3 \cdot 2 \cdot 1 \stackrel{1}{\longrightarrow} 0 \cdot 1 \cdot 2 \cdot 3 \stackrel{0}{\longrightarrow} 0 \stackrel{7}{\longrightarrow} 2x + 4y = 8$
	axis.	2x + 4y = 0
	2. Cover the y term and solve the resulting equation. Plot this on the $y - y$	
	axis.	
	3. Draw a line through the two points plotted.	
3. Gradient	The gradient of a line is how steep it is.	Gradient = 4/2 = 2
	Gradient =	Gradient = -3/1 =-3
	Change in y _ Rise	
	$\frac{1}{Change in x} = \frac{1}{Run}$	2
	The gradient can be positive negative.	
4. Finding the	Substitute in the gradient (m) and point	Find the equation of the line with
Equation of a	(x,y) in to the equation $y = mx + c$ and solve for c.	gradient 4 passing through (2,7).
Line given a point and a gradient	solve for c.	y = mx + c
		$7 = 4 \times 2 + c$
		c = -1
		y = 4x - 1
5. Finding the	Use the two points to calculate the	Find the equation of the line passing
Equation of a	gradient. Then repeat the method above using the gradient and either of	through (6,11) and (2,3)
Line <u>given two</u> points	the points.	$m = \frac{11 - 3}{6 - 2} = 2$
		y = mx + c
		$11 = 2 \times 6 + c$
		c = -1
		y = 2x - 1 Are the lines $y = 3x - 1$ and $2y - 6x + 2x - 1$
6. Parallel Lines	If two lines are parallel , they will have	
	the same gradient . The value of m will be the same for both lines.	10 = 0 parallel? Answer:
		Rearrange the second equation into the
		form $y = mx + c$
		$2y - 6x + 10 = 0 \rightarrow y = 3x - 5$
		Since the two gradients are equal (3), the lines are parallel.

	Knowledge Organiser Y11 Fo	oundation Maths: Simultaneous Equations
Key vocabulary	Definition/Tips	Example
1. Simultaneous	A set of two or more equations , each	2x + y = 7
Equations	involving two or more variables	3x - y = 8
	(letters).	
	The solutions to simultaneous equations	x = 3
	satisfy both/all of the equations.	y = 1
2. Coefficient	A number used to multiply a variable.	6z
	It is the number that comes before/in	
	front of a letter.	6 is the coefficient
		z is the variable
3. Solving	1. Balance the coefficients of one of the	5x + 2y = 9
Simultaneous	variables.	10x + 3y = 16
Equations (by Elimination)	2. Eliminate this variable by adding or	Multiply the first equation by 2.
Elimination	subtracting the equations (Same Sign	
	Subtract, Different Sign Add)	10x + 4y = 18
		10x + 3y = 16
	3. Solve the linear equation you get	Same Sign Subtract (+10x on both)
	using the other variable.	y = 2
	4. Substitute the value you found back	Substitute $y = 2$ into equation.
	into one of the previous equations.	$5x + 2 \times 2 = 9$
		$3\lambda + 2 \wedge 2 = 3$
	5. Solve the equation you get.	5x + 4 = 9
	6. Check that the two values you get	5x = 5
	satisfy both original equations.	
		x = 1
		Solution: $x = 1, y = 2$
4. Solving	1. Rearrange one of the equations into	y - 2x = 3
Simultaneous	the form $y = \dots$ or $x = \dots$	2w + 4w = 1
Equations (by	2 Culoritude the right hand side of the	3x + 4y = 1
Substitution)	2. Substitute the right-hand side of the	Rearrange: $y - 2x = 3$
	rearranged equation into the other	$y - 2x - 3$ $\rightarrow y = 2x + 3$
	equation.	Substitute:
	3. Expand and solve this equation.	3x + 4(2x + 3) = 1
	4 Substitute the value into the $y = -\alpha r$	Solve:
	4. Substitute the value into the $y =$ or	3x + 8x + 12 = 1
	$x = \dots$ equation.	
	5. Check that the two values you get	11x = -11
	satisfy both original equations.	x = -1
		Substitute:
		$y = 2 \times -1 + 3, y = 1$
		Solution: $x = -1, y = 1$

5. Solving	Draw the graphs of the two equations.	y = 2x - 1
Simultaneous Equations	The solutions will be where the lines meet.	y = 5 - x
(Graphically)	The solution can be written as a coordinate .	
		y = 5 - x and $y = 2x - 1$.
		They meet at the point with coordinates
C. Coluina Lineau		(2,3) so the answer is $x = 2$ and $y = 3$
6. Solving Linear	Method 1: If both equations are in the	Example 1
and Quadratic Simultaneous	same form (e.g., Both $y =$):	Solve
Equations	1. Set the equations equal to each	$y = x^2 - 2x - 5$ and
Equations	other.	y = x - 1
	2. Rearrange to make the equation	$x^2 - 2x - 5 = x - 1$
	equal to zero.	$x^2 - 3x - 4 = 0$
	3. Solve the quadratic equation.	(x-4)(x+1) = 0
	4. Substitute the values back in to one	x = 4 and $x = -1$
	of the equations.	y = 4 - 1 = 3 and
		y = -1 - 1 = -2
	Method 2: If the equations are not in	Answers: (4,3) and (-1,-2)
	the same form:	Example 2
	1. Rearrange the linear equation into	Solve $x^2 + y^2 = 5$
	the form $y = \dots$ or $x = \dots$	and $x + y = 3$
	2. Substitute in to the quadratic	x = 3 - y
	equation.	$(3-y)^2 + y^2 = 5$
	3. Rearrange to make the equation	$9 - 6y + y^2 + y^2 = 5$
	equal to zero.	$2y^2 - 6y + 4 = 0$
	4. Solve the quadratic equation.	$y^{2} - 3y + 2 = 0$ (y - 1)(y - 2) = 0
	5. Substitute the values back in to one	(y - 1)(y - 2) = 0 y = 1 and y = 2
	of the equations.	y = 1 and $y = 2x = 3 - 1 = 2$
	You should get two pairs of solutions	and $x = 3 - 2 = 1$
	(two values for x , two values for y .)	Answers: (2,1) and (1,2)
	Graphically, you should have two points	
	of intersection.	