Knowledge Organiser Y11 Foundation Maths: Area and perimeter

| Key Vocabulary | Definition/Tips | Example |
| :--- | :--- | :--- | :--- |
| 1. Perimeter | | |
| a shape. | | |
| Units include: $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$ etc. | | |

Knowledge Organiser Y11 Foundation Maths: Arcs, sectors, and surface area

Key Vocabulary	Definition/Tips	Example
1. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360° and multiply by the circumference.	$\text { Arc Length }=\frac{115}{360} \times \pi \times 8=8.03 \mathrm{~cm}$
2. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over 360° and multiply by the area.	$\text { Area }=\frac{115}{360} \times \pi \times 4^{2}=16.1 \mathrm{~cm}^{2}$
3. Surface Area of a Cylinder	```Curved Surface Area = \pidh or 2\pirh Total SA = 2\pir }\mp@subsup{r}{}{2}+\pid or Total SA =2\pir 2}+2\pir```	Total $S A=2 \pi(2)^{2}+\pi(4)(5)=28 \pi$
4. Surface Area of a Cone	$\begin{aligned} & \text { Curved Surface Area }=\boldsymbol{\pi r l} \boldsymbol{l} \\ & \text { where } l=\text { slant height } \\ & \text { Total SA }=\boldsymbol{\pi r} \boldsymbol{l}+\boldsymbol{\pi r} \boldsymbol{r}^{2} \end{aligned}$ You may need to use Pythagoras' Theorem to find the slant height	Total SA $=\pi(3)(5)+\pi(3)^{2}=24 \pi$
5. Surface Area of a Sphere	$S A=4 \pi r^{2}$ Look out for hemispheres - halve the SA of a sphere and add on a circle (πr^{2})	Find the surface area of a sphere with radius 3 cm . $S A=4 \pi(3)^{2}=36 \pi \mathrm{~cm}^{2}$

Knowledge Organiser Y11 Foundation Maths: Area and perimeter of circles

Key Vocabulary	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	
2. Parts of a Circle	Radius - the distance from the centre of a circle to the edge Diameter - the total distance across the width of a circle through the centre. Circumference - the total distance around the outside of a circle Chord - a straight line whose end points lie on a circle Tangent - a straight line which touches a circle at exactly one point Arc - a part of the circumference of a circle Sector - the region of a circle enclosed by two radii and their intercepted arc Segment - the region bounded by a chord and the arc created by the chord	Parts of a Circle Radius Chord Segment Diameter Arc Sector Circumference
3. Circumference of a Circle	$\boldsymbol{C}=\boldsymbol{\pi} \boldsymbol{d}$ which means 'pi x diameter'	If the radius was 5 cm , then: $C=\pi \times 10=31.4 \mathrm{~cm}$
4. Perimeter of a Semi-Circle	Perimeter of a semi-circle is the curved length (half the circumference of the circle) plus the straight length (diameter)	$\begin{aligned} \text { Curved length } & =2 \pi r \div 2 \\ & =2 \times \pi \times 16 \div 2 \\ & =50.265 \ldots \mathrm{~mm} \\ \text { Straight length } & =d=2 r=2 \times 16 \\ & =32 \mathrm{~mm} \\ \text { Total length } & =\text { curved length }+ \text { straight length } \\ & =50.265 \ldots+32=\mathbf{8 2 . 3} \mathbf{~ m m} \text { (} 1 \text { d.p. }) \end{aligned}$
5. Perimeter of a quarter-Circle	Perimeter of a quarter-circle is the curved length (quarter of the circumference) plus the straight length (2 radii)	
6. Area of a Circle	$\boldsymbol{A}=\boldsymbol{\pi} \boldsymbol{r}^{2}$ which means 'pi x radius squared'.	If the radius was 5 cm , then: $A=\pi \times 5^{2}=78.5 \mathrm{~cm}^{2}$
7. Area of a SemiCircle	$\frac{A=\pi r^{2}}{2}$ which means 'pi x radius squared all divided by 2^{\prime}.	If the radius was 5 cm , then: $A=\frac{\pi \times 5^{2}}{2}=39.3 \mathrm{~cm}^{2}$
8. Area of a quarter-Circle	$\frac{A=\pi r^{2}}{4}$ which means 'pi x radius squared all divided by 4'.	If the radius was 5 cm , then: $A=\frac{\pi \times 5^{2}}{4}=19.6 \mathrm{~cm}^{2}$
9.Finding the Diameter from the Circumference of a Circle	$\boldsymbol{d}=\frac{\boldsymbol{C}}{\boldsymbol{\pi}}$ which means 'circumference divided by pi'	If the circumference was 5 cm , then: $d=\frac{5}{\pi}=1.59 \mathrm{~cm}$

10. Finding the Radius from the Area of a Circle	$\boldsymbol{r}=\sqrt{\frac{A}{\pi}}$ which means 'the square root of (area divided by pi)'	If the circumference was 5cm, then: $d=\frac{5}{\pi}$
$\mathbf{1 1 . ~} \boldsymbol{\pi}$ ('pi')	Pi is the circumference of a circle divided by the diameter. $\boldsymbol{\pi} \approx \mathbf{3 . 1 4}$	
12. Perimeter of Compound Shapes	Find the lengths of the outside parts of the individual shapes that form the compound shape and add the lengths together.	
13. Area of Compound Shapes	Find the area for each individual shape that creates the compound shape and add the areas together.	

Knowledge Organiser Y11 Foundation Maths: Volume including cylinders

Key vocabulary	Definition/Tips	Example		
1. Volume	Volume is a measure of the amount of space inside a solid shape. Units: $\mathrm{mm}^{3}, \mathrm{~cm}^{3}, \mathrm{~m}^{3}$ etc.	$\boldsymbol{V}=$ Length \times Width \times Height $\boldsymbol{V}=\boldsymbol{L} \times \boldsymbol{W} \times \boldsymbol{H}$		
2. Volume of a				
Cube/Cuboid				
formula for a cube/cuboid.			\quad	A prism is a 3D shape whose cross
:---				
section is the same throughout.				

5. Volume of a Prism	$\begin{aligned} & V=\text { Area of Cross Section } \\ & \times \text { Length } \\ & V=A \times L \end{aligned}$	
6. Volume of a Cylinder	$V=\pi r^{2} h$	$\begin{aligned} & V=\pi(4)(5) \\ & =62.8 \mathrm{~cm}^{3} \end{aligned}$
7. Volume of a Cone	$V=\frac{1}{3} \pi r^{2} h$	
8. Volume of a Pyramid	$\text { Volume }=\frac{1}{3} B h$ where $B=$ area of the base	$V=\frac{1}{3} \times 6 \times 6 \times 7=84 \mathrm{~cm}^{3}$
9. Volume of a Sphere	$V=\frac{4}{3} \pi r^{3}$ Look out for hemispheres - just halve the volume of a sphere.	Find the volume of a sphere with diameter 10 cm . $V=\frac{4}{3} \pi(5)^{3}=\frac{500 \pi}{3} \mathrm{~cm}^{3}$
10. Volume of a Compound Shape	A compound shape made up of a combination of other known shapes put together.	$\begin{aligned} \text { Area of rectangle } A & =1.2 \times 3.6 \\ & =4.32 \mathrm{~m}^{2} \\ \text { Area of rectangle } B & =1.2 \times 1.2 \\ & =1.44 \mathrm{~m}^{2} \end{aligned}$ Area of cross-section $=4.32+1.44=5.76 \mathrm{~m}^{2}$ $\text { Volume }=\text { area of cross-section } \times \text { length }$ $=5.76 \times 2.5=\mathbf{1 4 . 4} \mathbf{~ m}^{3}$

Knowledge Organiser Y11 Foundation Maths: Fractions and reciprocals

Key Vocabulary	Definition/Tips	Example
1. Fraction	A mathematical expression representing the division of one integer by another. Fractions are written as two numbers separated by a horizontal line.	$\frac{2}{7}$ is a 'proper' fraction. $\frac{9}{4}$ is an 'improper' or 'top-heavy' fraction.
2. Numerator	The top number of a fraction.	In the fraction $\frac{\mathbf{3}}{\mathbf{5}}, 3$ is the numerator.
3. Denominator	The bottom number of a fraction.	In the fraction $\frac{3}{5}, 5$ is the denominator.
4. Unit Fraction	A fraction where the numerator is one and the denominator is a positive integer.	$\frac{\mathbf{1}}{\mathbf{2}}, \frac{\mathbf{1}}{\mathbf{3}}, \frac{\mathbf{1}}{\mathbf{4}}$ etc. are examples of unit fractions.
5. Reciprocal	The reciprocal of a number is 1 divided by the number. The reciprocal of x is $\frac{1}{x}$ When we multiply a number by its reciprocal, we get 1. This is called the 'multiplicative inverse'.	The reciprocal of 5 is $\frac{\mathbf{1}}{\mathbf{5}}$ The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$, because $\frac{2}{3} \times \frac{3}{2}=1$
6. Mixed Number	A number formed of both an integer part and a fraction part.	$3 \frac{2}{5}$ is an example of a mixed number.
7. Simplifying Fractions	Divide the numerator and denominator by the highest common factor.	$\frac{20}{45}=\frac{4}{9}$
8. Equivalent Fractions	Fractions which represent the same value.	$\frac{2}{5}=\frac{4}{10}=\frac{20}{50}=\frac{60}{150} \text { etc. }$
9. Comparing Fractions	To compare fractions, they each need to be rewritten so that they have a common denominator. Ascending means smallest to biggest. Descending means biggest to smallest.	Put in to ascending order: $\frac{3}{4}, \frac{2}{3}, \frac{5}{6}, \frac{1}{2}$. Equivalent: $\frac{9}{12}, \frac{8}{12}, \frac{10}{12}, \frac{6}{12}$ Correct order: $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}$
10. Fraction of an Amount	Divide by the bottom, times by the top	Find $\frac{2}{5}$ of $£ 60$ $\begin{aligned} & 60 \div 5=12 \\ & 12 \times 2=24 \end{aligned}$

11. Adding or Subtracting Fractions	Find the LCM of the denominators to find a common denominator. Use equivalent fractions to change each fraction to the common denominator. Then just add or subtract the numerators and keep the denominator the same.	$\frac{2}{3}+\frac{4}{5}$ Multiples of 3 : $3,6,9,12,15$.. Multiples of 5: 5, 10, 15.. LCM of 3 and $5=15$ $\begin{aligned} \frac{2}{3} & =\frac{10}{15} \\ \frac{4}{5} & =\frac{12}{15} \\ \frac{10}{15}+\frac{12}{15} & =\frac{22}{15}=1 \frac{7}{15} \end{aligned}$
12. Multiplying Fractions	Multiply the numerators together and multiply the denominators together.	$\frac{3}{8} \times \frac{2}{9}=\frac{6}{72}=\frac{1}{12}$
13. Dividing Fractions	'Keep it, Flip it, Change it - KFC' Keep the first fraction the same. Flip the second fraction upside down. Change the divide to a multiply. Multiply by the reciprocal of the second fraction.	$\frac{3}{4} \div \frac{5}{6}=\frac{3}{4} \times \frac{6}{5}=\frac{18}{20}=\frac{9}{10}$

Knowledge Organiser Y11 Foundation Maths: Indices and standard form

Key Vocabulary	Definition/Tips	Example
1. Square Number	The number you get when you multiply a number by itself.	$\begin{gathered} 1,4,9,16,25,36,49,64,81,100,121, \\ 144,169,196,225 . . \\ 9^{2}=9 \times 9=81 \end{gathered}$
2. Square Root	The number you multiply by itself to get another number. The reverse process of squaring a number.	$\begin{array}{r} \sqrt{36}=6 \\ \text { because } 6 \times 6=36 \end{array}$
3. Solutions to $x^{2}=\ldots$	Equations involving squares have two solutions, one positive and one negative.	Solve $x^{2}=25$ $x=5 \text { or } x=-5$ This can also be written as $x= \pm 5$
4. Cube Number	The number you get when you multiply a number by itself and itself again.	$\begin{aligned} & 1,8,27,64,125 \ldots \\ & 2^{3}=2 \times 2 \times 2=8 \end{aligned}$
5. Cube Root	The number you multiply by itself and itself again to get another number. The reverse process of cubing a number.	$\begin{array}{r} \sqrt[3]{125}=5 \\ \text { because } 5 \times 5 \times 5=125 \end{array}$

6. Powers of...	The powers of a number are that number raised to various powers.	The powers of 3 are: $\begin{aligned} & 3^{1}=3 \\ & 3^{2}=9 \\ & 3^{3}=27 \\ & 3^{4}=81 \text { etc. } \end{aligned}$
7. Multiplication Index Law	When multiplying with the same base (number or letter), add the powers. $a^{m} \times a^{n}=a^{m+n}$	$\begin{gathered} 7^{5} \times 7^{3}=7^{8} \\ a^{12} \times a=a^{13} \\ 4 x^{5} \times 2 x^{8}=8 x^{13} \end{gathered}$
8. Division Index Law	When dividing with the same base (number or letter), subtract the powers. $a^{m} \div a^{n}=a^{m-n}$	$\begin{gathered} 15^{7} \div 15^{4}=15^{3} \\ x^{9} \div x^{2}=x^{7} \\ 20 a^{11} \div 5 a^{3}=4 a^{8} \end{gathered}$
9. Brackets Index Laws	When raising a power to another power, multiply the powers together. $\left(a^{m}\right)^{n}=a^{m n}$	$\begin{gathered} \left(y^{2}\right)^{5}=y^{10} \\ \left(6^{3}\right)^{4}=6^{12} \\ \left(5 x^{6}\right)^{3}=125 x^{18} \end{gathered}$
10. Notable Powers	$\begin{aligned} & p=p^{1} \\ & p^{0}=1 \end{aligned}$	$99999^{0}=1$
11. Negative Powers	A negative power performs the reciprocal. $a^{-m}=\frac{1}{a^{m}}$	$3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
12. Fractional Powers	The denominator of a fractional power acts as a 'root'. The numerator of a fractional power acts as a normal power. $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$	$\begin{gathered} 27^{\frac{2}{3}}=(\sqrt[3]{27})^{2}=3^{2}=9 \\ \left(\frac{25}{16}\right)^{\frac{3}{2}}=\left(\frac{\sqrt{25}}{\sqrt{16}}\right)^{3}=\left(\frac{5}{4}\right)^{3}=\frac{125}{64} \end{gathered}$
13. Standard Form	$A \times 10^{b}$ where $\mathbf{1} \leq A<\mathbf{1 0}, \quad b=$ integer	$\begin{gathered} 8400=8.4 \times 10^{3} \\ 0.00036=3.6 \times 10^{-4} \end{gathered}$
14. Multiplying or Dividing with Standard Form	Multiply: Multiply the numbers and add the powers. Divide: Divide the numbers and subtract the powers.	$\begin{aligned} & \left(1.2 \times 10^{3}\right) \times\left(4 \times 10^{6}\right)=8.8 \times 10^{9} \\ & \left(4.5 \times 10^{5}\right) \div\left(3 \times 10^{2}\right)=1.5 \times 10^{3} \end{aligned}$
15. Adding or Subtracting with Standard Form	Convert into ordinary numbers, calculate, and then convert back into standard form	$\begin{gathered} 2.7 \times 10^{4}+4.6 \times 10^{3} \\ =27000+4600=31600 \\ =3.16 \times 10^{4} \end{gathered}$

Knowledge Organiser Y11 Foundation Maths: Congruence and Similarity

Key Vocabulary	Definition/Tips	Example
1. Congruent Shapes	Shapes are congruent if they are identical - same shape and same size. Shapes can be rotated or reflected but still be congruent.	
2. Congruent Triangles	4 ways of proving that two triangles are congruent: 1. SSS (Side, Side, Side) 2. RHS (Right angle, Hypotenuse, Side) 3. SAS (Side, Angle, Side) 4. ASA (Angle, Side, Angle) or AAS ASS (Angle, Side, Side) does not prove congruency.	$\begin{aligned} & B C=D F \\ & \angle A B C=\angle E D F \\ & \angle A C B=\angle E F D \end{aligned}$ \therefore The two triangles are congruent by AAS.
3. Similar Shapes	Shapes are similar if they are the same shape but different sizes. The matching sides must have the same proportions.	
4. Scale Factor	The ratio of corresponding sides of two similar shapes. To find a scale factor, divide a length on one shape by the corresponding length on a similar shape.	Scale Factor $=15 \div 10=1.5$

Key vocabulary	Definition/Tips	Example
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	
2. Vector Notation	A vector can be written in 3 ways: A or $\overrightarrow{\boldsymbol{A B}}$ or $\binom{\mathbf{1}}{\mathbf{3}}$	
3. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
4. Vector	A vector is a quantity represented by an arrow with both direction and magnitude. $\overrightarrow{A B}=-\overrightarrow{B A}$	$\overrightarrow{A B}=\binom{3}{2}$
5. Equal Vectors	Magnitude is defined as the length of a vector. If two vectors have the same magnitude and direction, they are equal.	
6. Parallel Vectors	Parallel vectors are multiples of each other.	$\mathbf{2 a + b}$ and $4 \mathbf{a}+\mathbf{2 b}$ are parallel as they are multiple of each other

Knowledge Organiser Y11 Foundation Maths: Algebra And Proportion

Key vocabulary	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols, numbers, or letters.	$3 x+2$ or $5 y^{2}$
2. Equation	A statement showing that two expressions are equal	$2 \mathrm{y}-17=15$
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: \equiv	$2 x \equiv x+x$
4. Formula	Shows the relationship between two or more variables	$\begin{aligned} & \text { Area of a rectangle }=\text { length } \times \text { width or } A= \\ & L \times W \end{aligned}$
5. Changing The Subject	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y=\frac{2 x-1}{z}$ Multiply both sides by z $y z=2 x-1$ Add 1 to both sides $y z+1=2 x$ Divide by 2 on both sides $\frac{y z+1}{2}=x$ X is now the subject
6. Direct Proportion	If y is directly proportional to x, this can be written as $\boldsymbol{y} \propto \boldsymbol{x}$ An equation of the form $\boldsymbol{y}=$ $\boldsymbol{k} \boldsymbol{x}$ represents direct proportion, where k is the constant of proportionality.	
7. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage. If y is inversely proportional to x, this can be written as $\boldsymbol{y} \propto \frac{\mathbf{1}}{\boldsymbol{x}}$ An equation of the form $\boldsymbol{y}=\frac{\boldsymbol{k}}{\boldsymbol{x}}$ represents inverse proportion.	

8. Using proportionality formulae	Direct: $\mathbf{y}=\mathbf{k x}$ or $\mathbf{y} \propto \mathbf{x}$ Inverse: $\mathrm{y}=\frac{\boldsymbol{k}}{\boldsymbol{x}}$ or $\mathrm{y} \propto \frac{\mathbf{1}}{\boldsymbol{x}}$ 1. Solve to find \mathbf{k} using the pair of values in the question. 2. Rewrite the equation using the k you have just found. 3. Substitute the other given value from the question into the equation to find the missing value.	p is directly proportional to q . When $\mathrm{p}=12, \mathrm{q}=4$. Find p when $\mathrm{q}=20$. $\begin{aligned} & \text { 1. } p=k q \\ & 12=k \times 4 \end{aligned}$ So, $k=3$ 2. $p=3 q$ 3. $p=3 \times 20=60$, so $p=60$
9. Direct Proportion with powers	Graphs showing direct proportion can be written in the form $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}^{\boldsymbol{n}}$ Direct proportion graphs will always start at the origin.	
10. Inverse Proportion with powers	Graphs showing inverse proportion can be written in the form $y=\frac{k}{x^{n}}$ Inverse proportion graphs will never start at the origin.	Inverse Proportion Graphs

Knowledge Organiser Y11 Foundation Maths: Graphs

Key vocabulary	Definition/Tips	Example
1. Coordinates	Written in pairs. The first term is the \mathbf{x} coordinate (movement across). The second term is the y-coordinate (movement up or down)	 A: $(4,7)$ B: $(-6,-3)$
2. Linear Graph	Straight line graph. The equation of a linear graph can contain an \mathbf{x}-term, a \mathbf{y}-term, and a number.	Example: Other examples: $\begin{aligned} & x=y \\ & y=4 \\ & x=-2 \\ & y=2 x-7 \end{aligned}$

Knowledge Organiser Y11 Foundation Maths: Equations and Lines

	Method 3: Cover-Up Method (use when the equation is in the form $a x+b y=c$) 1. Cover the x term and solve the resulting equation. Plot this on the $x-$ axis. 2. Cover the y term and solve the resulting equation. Plot this on the $y-$ axis. 3. Draw a line through the two points plotted.	$2 x+4 y=8$
3. Gradient	The gradient of a line is how steep it is. Gradient $=$ $\frac{\text { Change in } y}{\text { Change in } x}=\frac{\text { Rise }}{\text { Run }}$ The gradient can be positive negative.	
4. Finding the Equation of a Line given a point and a gradient	Substitute in the gradient (m) and point (x, y) in to the equation $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$ and solve for c.	Find the equation of the line with gradient 4 passing through $(2,7)$. $\begin{gathered} y=m x+c \\ 7=4 \times 2+c \\ c=-1 \\ y=4 x-1 \end{gathered}$
5. Finding the Equation of a Line given two points	Use the two points to calculate the gradient. Then repeat the method above using the gradient and either of the points.	Find the equation of the line passing through $(6,11)$ and $(2,3)$ $\begin{gathered} m=\frac{11-3}{6-2}=2 \\ y=m x+c \\ 11=2 \times 6+c \\ c=-1 \\ y=2 x-1 \end{gathered}$
6. Parallel Lines	If two lines are parallel, they will have the same gradient. The value of m will be the same for both lines.	Are the lines $y=3 x-1$ and $2 y-6 x+$ $10=0$ parallel? Answer: Rearrange the second equation into the form $y=m x+c$ $2 y-6 x+10=0 \rightarrow y=3 x-5$ Since the two gradients are equal (3), the lines are parallel.

Knowledge Organiser Y11 Foundation Maths: Simultaneous Equations

Key vocabulary	Definition/Tips	Example
1. Simultaneous Equations	A set of two or more equations, each involving two or more variables (letters). The solutions to simultaneous equations satisfy both/all of the equations.	$\begin{gathered} 2 x+y=7 \\ 3 x-y=8 \\ x=3 \\ y=1 \\ \hline \end{gathered}$
2. Coefficient	A number used to multiply a variable. It is the number that comes before/in front of a letter.	$6 z$ 6 is the coefficient z is the variable
3. Solving Simultaneous Equations (by Elimination)	1. Balance the coefficients of one of the variables. 2. Eliminate this variable by adding or subtracting the equations (Same Sign Subtract, Different Sign Add) 3. Solve the linear equation you get using the other variable. 4. Substitute the value you found back into one of the previous equations. 5. Solve the equation you get. 6. Check that the two values you get satisfy both original equations.	$\begin{aligned} 5 x+2 y & =9 \\ 10 x+3 y & =16 \end{aligned}$ Multiply the first equation by 2 . $\begin{aligned} & 10 x+4 y=18 \\ & 10 x+3 y=16 \end{aligned}$ Same Sign Subtract (+10x on both) $y=2$ Substitute $y=2$ into equation. $\begin{gathered} 5 x+2 \times 2=9 \\ 5 x+4=9 \\ 5 x=5 \\ x=1 \end{gathered}$ Solution: $x=1, y=2$
4. Solving Simultaneous Equations (by Substitution)	1. Rearrange one of the equations into the form $y=$... or $x=$... 2. Substitute the right-hand side of the rearranged equation into the other equation. 3. Expand and solve this equation. 4. Substitute the value into the $y=\ldots$ or $x=$... equation. 5. Check that the two values you get satisfy both original equations.	$y-2 x=3$ Rearrange: $3 x+4 y=1$ $y-2 x=3$ $y=2 x+3$ Substitute: $3 x+4(2 x+3)=1$ Solve: $\begin{aligned} 3 x+8 x+12 & =1 \\ 11 x & =-11 \\ x & =-1 \end{aligned}$ Substitute: $y=2 x-1+3, y=1$ Solution: $x=-1, y=1$

5. Solving Simultaneous Equations (Graphically)	Draw the graphs of the two equations. The solutions will be where the lines meet. The solution can be written as a coordinate.	$y=5-x \text { and } y=2 x-1$ They meet at the point with coordinates $(2,3)$ so the answer is $x=2$ and $y=3$
6. Solving Linear and Quadratic Simultaneous Equations	Method 1: If both equations are in the same form (e.g., Both $y=$...): 1. Set the equations equal to each other. 2. Rearrange to make the equation equal to zero. 3. Solve the quadratic equation. 4. Substitute the values back in to one of the equations. Method 2: If the equations are not in the same form: 1. Rearrange the linear equation into the form $y=$... or $x=$... 2. Substitute in to the quadratic equation. 3. Rearrange to make the equation equal to zero. 4. Solve the quadratic equation. 5. Substitute the values back in to one of the equations. You should get two pairs of solutions (two values for x, two values for y.) Graphically, you should have two points of intersection.	Example 1 Solve $\begin{aligned} & y=x^{2}-2 x-5 \text { and } \\ & y=x-1 \\ & \quad x^{2}-2 x-5=x-1 \\ & \quad x^{2}-3 x-4=0 \\ & \quad(x-4)(x+1)=0 \\ & x=4 \text { and } x=-1 \\ & y=4-1=3 \text { and } \\ & y=-1-1=-2 \end{aligned}$ Answers: (4,3) and (-1,-2) Example 2 Solve $x^{2}+y^{2}=5$ and $x+y=3$ $x=3-y$ $(3-y)^{2}+y^{2}=5$ $9-6 y+y^{2}+y^{2}=5$ $2 y^{2}-6 y+4=0$ $y^{2}-3 y+2=0$ $(y-1)(y-2)=0$ $\begin{aligned} & y=1 \text { and } y=2 \\ & x=3-1=2 \end{aligned}$ and $x=3-2=1$ Answers: $(2,1)$ and $(1,2)$

