Key	Definition/Tips	Example
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means ' 2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point. Use tracing paper.	Rotate Shape A 90° anti-clockwise about $(0,1)$
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $x=$? is a vertical line. Line $y=$? is a horizontal line. Line $y=x$ is a diagonal line.	Reflect shape C in the line $y=x$
5. Enlargement	The shape will get bigger or smaller. Multiply each side by the scale factor.	Scale Factor $=3$ means ' 3 times larger = multiply by 3 ' $\begin{aligned} & \text { Scale Factor }=1 / 2 \text { means 'half the } \\ & \text { size }=\text { divide by } 2 \text { ' } \end{aligned}$

6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around.	
7. Describing Transformati ons	Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details.	- Translation, Vector - Rotation, Direction, Angle, Centre - Reflection, Equation of mirror line - Enlargement, Scale factor, Centre of enlargement
8. Negative Scale Factor Enlargement s	Negative enlargements will look like they have been rotated. $S F=-2$ will be rotated, and also twice as big.	Enlarge ABC by scale factor -2 , centre (1,1)
9. Invariance	A point, line or shape is invariant if it does not change/move when a transformation is performed. An invariant point 'does not vary'.	If shape P is reflected in the y axis, then exactly one vertex is invariant.

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Key } \\ \text { Vocabulary }\end{array} & \text { Definition/Tips } & \text { Parallel lines never meet. } \\ \hline \text { 1. Parallel }\end{array} \quad \begin{array}{l}\text { Perpendicular lines are at right angles. } \\ \text { There is a } 90^{\circ} \text { angle between them. } \\ \text { 2. } \\ \text { Perpendicula } \\ \mathrm{r}\end{array}\right)$

	3. Place the sharp point of the compass on one of these points, open over half way and draw an arc above and below the line. 4. Repeat from the other point on the line. 5. Draw a straight line through the two intersecting arcs.
Given line PQ and point R on the line:	
Perpendicula r from a Point on a Line	1. Put the sharp point of a pair of compasses on point R. 2. Draw two arcs either side of the point of equal width (giving points S and T) 3. Place the compass on point S, open over halfway and draw an arc above the line. 4. Repeat from the other arc on the line (point T). 5. Draw a straight line from the intersecting arcs to the original point on the line.
	1. Draw the base of the triangle using a ruler. 2. Open a pair of compasses to the width of one side of the triangle. 3. Place the point on one end of the line and draw an arc. 4. Repeat for the other side of the triangle at the other end of the line. 5. Using a ruler, draw lines connecting the ends of the base of the triangle to the point where the arcs intersect.
1. Draw the base of the triangle using a ruler. 2. Measure the angle required using a protractor and mark this angle. 3. Remove the protractor and draw a line of the exact length required in line with the angle mark drawn. 4. Connect the end of this line to the other end of the base of the triangle.	
Triangles	
(Side, Side,	
Side)	

	4. Repeat this for the other angle on the other end of the base of the triangle.	
11. Constructing an Equilateral Triangle (also makes a 60° angle)	1. Draw the base of the triangle using a ruler. 2. Open the pair of compasses to the exact length of the side of the triangle. 3. Place the sharp point on one end of the line and draw an arc. 4. Repeat this from the other end of the line. 5. Using a ruler, draw lines connecting the ends of the base of the triangle to the point where the arcs intersect.	
12. Loci and Regions	A locus is a path of points that follow a rule. For the locus of points closer to B than A, create a perpendicular bisector between A and B and shade the side closer to B. For the locus of points equidistant from A, use a compass to draw a circle, centre A. For the locus of points equidistant to line X and line Y, create an angle bisector. For the locus of points a set distance from a line, create two semi-circles at either end joined by two parallel lines.	Points Closer to B than A
13. Equidistant	A point is equidistant from a set of objects if the distances between that point and each of the objects is the same.	

Knowledge Organiser Y10 Simultaneous Equations

Key vocabulary	Definition/Tips	Example
1. Simultaneous Equations	A set of two or more equations, each involving two or more variables (letters). The solutions to simultaneous equations satisfy both/all of the equations.	$\begin{gathered} 2 x+y=7 \\ 3 x-y=8 \\ x=3 \\ y=1 \end{gathered}$
2. Variable	A symbol, usually a letter, which represents a number which is usually unknown.	In the equation $x+2=5, x$ is the variable.
3. Coefficient	A number used to multiply a variable. It is the number that comes before/in front of a letter.	$6 z$ 6 is the coefficient z is the variable
4. Solving Simultaneous Equations (by Elimination)	1. Balance the coefficients of one of the variables. 2. Eliminate this variable by adding or subtracting the equations (Same Sign Subtract, Different Sign Add) 3. Solve the linear equation you get using the other variable. 4. Substitute the value you found back into one of the previous equations. 5 . Solve the equation you get. 6. Check that the two values you get satisfy both of the original equations.	$\begin{gathered} 5 x+2 y=9 \\ 10 x+3 y=16 \end{gathered}$ Multiply the first equation by 2 . $\begin{aligned} & 10 x+4 y=18 \\ & 10 x+3 y=16 \end{aligned}$ Same Sign Subtract (+10x on both) $y=2$ Substitute $y=2$ in to equation. $\begin{gathered} 5 x+2 \times 2=9 \\ 5 x+4=9 \\ 5 x=5 \\ x=1 \end{gathered}$ Solution: $x=1, y=2$
5. Solving Simultaneous Equations (by Substitution)	1. Rearrange one of the equations into the form $y=\ldots$ or $x=$... 2. Substitute the right-hand side of the rearranged equation into the other equation. 3. Expand and solve this equation. 4. Substitute the value into the $y=\ldots$ or $x=$... equation. 5. Check that the two values you get satisfy both of the original equations.	$\begin{gathered} y-2 x=3 \\ 3 x+4 y=1 \end{gathered}$ Rearrange: $y-2 x=3 \rightarrow y=2 x+$ 3 Substitute: $3 x+4(2 x+3)=1$ Solve: $3 x+8 x+12=1$ $\begin{gathered} 11 x=-11 \\ x=-1 \end{gathered}$ Substitute: $y=2 \times-1+3$ $y=1$ Solution: $x=-1, y=1$

6. Solving Simultaneous Equations (Graphically)	Draw the graphs of the two equations. The solutions will be where the lines meet. The solution can be written as a coordinate.	$y=5-x \text { and } y=2 x-1$ They meet at the point with coordinates $(2,3)$ so the answer is $x=2$ and $y=3$
7. Solving Linear and Quadratic Simultaneous Equations	Method 1: If both equations are in the same form (eg. Both $y=\ldots$): 1. Set the equations equal to each other. 2. Rearrange to make the equation equal to zero. 3. Solve the quadratic equation. 4. Substitute the values back in to one of the equations. Method 2: If the equations are not in the same form: 1. Rearrange the linear equation into the form $y=\ldots$ or $x=\ldots$ 2. Substitute in to the quadratic equation. 3. Rearrange to make the equation equal to zero. 4. Solve the quadratic equation. 5. Substitute the values back in to one of the equations. You should get two pairs of solutions (two values for x, two values for y.) Graphically, you should have two points of intersection.	Example 1 Solve $\begin{aligned} & y=x^{2}-2 x-5 \text { and } y=x-1 \\ & x^{2}-2 x-5=x-1 \\ & x^{2}-3 x-4=0 \\ & (x-4)(x+1)=0 \\ & x=4 \text { and } x=-1 \\ & y=4-1=3 \text { and } \\ & y=-1-1=-2 \end{aligned}$ Answers: $(4,3)$ and ($-1,-2$) Example 2 Solve $x^{2}+y^{2}=5$ and $x+y=3$ $\begin{gathered} x=3-y \\ (3-y)^{2}+y^{2}=5 \\ 9-6 y+y^{2}+y^{2}=5 \\ 2 y^{2}-6 y+4=0 \\ y^{2}-3 y+2=0 \\ (y-1)(y-2)=0 \\ y=1 \text { and } y=2 \\ x=3-1=2 \text { and } x=3-2=1 \end{gathered}$ Answers: $(2,1)$ and $(1,2)$

Key vocabulary	Definition/Tips 1. Quadratic	A quadratic expression is of the form $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$ where a, b and c are numbers, $\boldsymbol{a} \neq \mathbf{0}$

Quadratics when $a \neq 1$	1. Multiply a by c = ac 2. Find two numbers that add to give b and multiply to give ac. 3. Re-write the quadratic, replacing $b x$ with the two numbers you found. 4. Factorise in pairs - you should get the same bracket twice 5. Write your two brackets - one will be the repeated bracket, the other will be made of the factors outside each of the two brackets.	1. $6 \times-4=-24$ 2. Two numbers that add to give +5 and multiply to give -24 are +8 and 3 3. $6 x^{2}+8 x-3 x-4$ 4. Factorise in pairs: $\begin{gathered} 2 x(3 x+4)-1(3 x+4) \\ \text { 5. Answer }=(3 x+4)(2 x-1) \end{gathered}$
11. Solving Quadratics by Factorising $(a \neq 1)$	Factorise the quadratic in the usual way.Solve = 0 Make sure the equation $=0$ before factorising.	Solve $2 x^{2}+7 x-4=0$ Factorise: $(2 x-1)(x+4)=0$ $x=\frac{1}{2} \text { or } x=-4$
12. Completing the Square (when $a=1$)	A quadratic in the form $x^{2}+b x+c$ can be written in the form $(\boldsymbol{x}+\boldsymbol{p})^{2}+\boldsymbol{q}$ 1. Write a set of brackets with x in and half the value of b. 2. Square the bracket. 3. Subtract $\left(\frac{b}{2}\right)^{2}$ and add c. 4. Simplify the expression. You can use the completing the square form to help find the maximum or minimum of quadratic graph.	Complete the square of $y=x^{2}-6 x+2$ Answer: $\begin{gathered} (x-3)^{2}-3^{2}+2 \\ =(x-3)^{2}-7 \end{gathered}$ The minimum value of this expression occurs when $(x-3)^{2}=$ 0 , which occurs when $x=3$ When $x=3, y=0-7=-7$ Minimum point $=(3,-7)$
13. Completing the Square (when $a \neq 1$)	A quadratic in the form $a x^{2}+b x+c$ can be written in the form $\mathbf{p}(\boldsymbol{x}+\boldsymbol{q})^{2}+\boldsymbol{r}$ Use the same method as above, but factorise out a at the start.	Complete the square of $4 x^{2}+8 x-3$ Answer: $\begin{aligned} & 4\left[x^{2}+2 x\right]-3 \\ = & 4\left[(x+1)^{2}-1^{2}\right]-3 \\ = & 4(x+1)^{2}-4-3 \\ = & 4(x+1)^{2}-7 \end{aligned}$
14. Solving Quadratics by Completing the Square	Complete the square in the usual way and use inverse operations to solve.	$\begin{gathered} \text { Solve } x^{2}+8 x+1=0 \\ \text { Answer: } \begin{array}{c} (x+4)^{2}-4^{2}+1=0 \\ (x+4)^{2}-15=0 \\ (x+4)^{2}=15 \\ (x+4)= \pm \sqrt{15} \\ x=-4 \pm \sqrt{15} \end{array} \end{gathered}$
15. Solving Quadratics using the Quadratic Formula	A quadratic in the form $a x^{2}+b x+c=$ 0 can be solved using the formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ Use the formula if the quadratic does not factorise easily.	Solve $3 x^{2}+x-5=0$ Answer: $\begin{aligned} & a=3, b=1, c=-5 \\ & x= \frac{-1 \pm \sqrt{1^{2}-4 \times 3 \times-5}}{2 \times 3} \\ & x=\frac{-1 \pm \sqrt{61}}{6} \\ & x=1.14 \text { or }-1.47 \text { (2 d.p.) } \end{aligned}$

Knowledge Organiser Y10 Inequalities

Key vocabulary	Definition/Tips	Example
1. Inequality	An inequality says that two values are not equal. $a \neq b$ means that a is not equal to b .	$\begin{aligned} & 7 \neq 3 \\ & x \neq 0 \end{aligned}$
2. Inequality symbols	$x>2$ means x is greater than 2 $x<3$ means x is less than 3 $x \geq 1$ means \mathbf{x} is greater than or equal to 1 $x \leq 6$ means x is less than or equal to 6	State the integers that satisfy $\begin{gathered} -2<x \leq 4 \\ -1,0,1,2,3,4 \end{gathered}$
3. Inequalities on a Number Line	Inequalities can be shown on a number line. Open circles are used for numbers that are less than or greater than ($<$ or $>$) Closed circles are used for numbers that are less than or equal or greater than or equal (\leq or \geq)	
4. Graphical Inequalities	Inequalities can be represented on a coordinate grid. If the inequality is strict $(x>2)$ then use a dotted line. If the inequality is not strict $(x \leq 6)$ then use a solid line. Shade the region which satisfies all the inequalities.	Shade the region that satisfies: $y>2 x, x>1 \text { and } y \leq 3$
5. Quadratic Inequalities	Sketch the quadratic graph of the inequality. If the expression is $>\boldsymbol{o r} \geq$ then the answer will be above the x-axis. If the expression is $<\boldsymbol{o r} \leq$ then the answer will be below the x-axis. Look carefully at the inequality symbol in the question. Look carefully if the quadratic is a positive or negative parabola.	Solve the inequality $x^{2}-x-12<0$ Sketch the quadratic: The required region is below the x axis, so the final answer is: $-3<x<4$ If the question had been >0, the answer would have been: $x<-3 \text { or } x>4$
6. Set Notation	A set is a collection of things, usually numbers, denoted with brackets $\}$ $\{x \mid x \geq 7\}$ means 'the set of all x's, such that x is greater than or equal to 7 The ' x ' can be replaced by any letter. Some people use ' \because ' instead of ' \mid '	$\{3,6,9\}$ is a set.

Topic/Skill	Definition/Tips	Example
1. Probability	The likelihood/chance of something happening. Is expressed as a number between 0 (impossible) and 1 (certain). Can be expressed as a fraction, decimal, percentage or in words (likely, unlikely, even chance etc.)	
2. Probability Notation	$\mathbf{P}(\mathbf{A})$ refers to the probability that event A will occur.	P(Red Queen) refers to the probability of picking a Red Queen from a pack of cards.
3. Theoretical Probability	Number of Favourable Outcomes Total Number of Possible Outcomes	Probability of rolling a 4 on a fair 6sided die $=\frac{1}{6}$.
4. Relative Frequency	$\frac{\text { Number of Successful Trials }}{\text { Total Number of Trials }}$	A coin is flipped 50 times and lands on Tails 29 times. The relative frequency of getting $\text { Tails }=\frac{29}{50} .$
5. Expected Outcomes	To find the number of expected outcomes, multiply the probability by the number of trials.	The probability that a football team wins is 0.2 How many games would you expect them to win out of 40 ? $0.2 \times 40=8 \text { games }$
6. Exhaustive	Outcomes are exhaustive if they cover the entire range of possible outcomes. The probabilities of an exhaustive set of outcomes adds up to 1.	When rolling a six-sided die, the outcomes 1, 2, 3, 4, 5 and 6 are exhaustive, because they cover all the possible outcomes.
7. Mutually Exclusive	Events are mutually exclusive if they cannot happen at the same time. The probabilities of an exhaustive set of mutually exclusive events adds up to 1.	Examples of mutually exclusive events: - Turning left and right - Heads and Tails on a coin Examples of non mutually exclusive events: - King and Hearts from a deck of cards, because you can pick the King of Hearts
8. Frequency Tree	A diagram showing how information is categorised into various categories. The numbers at the ends of branches tells us how often something happened (frequency). The lines connected the numbers are called branches.	
9. Sample Space	The set of all possible outcomes of an experiment.	$\left.\begin{array}{c\|l\|l\|l\|l\|l\|}\hline+ & 1 & 2 & 3 & 4 & 5\end{array}\right)$

1. Combination	A collection of things, where the order does not matter.	How many combinations of two ingredients can you make with apple, banana and cherry? Apple, Banana/ Apple, Cherry Banana, Cherry/ 3 combinations
2. Permutation	A collection of things, where the order does matter.	You want to visit the homes of three friends, Alex (A), Betty (B) and Chandra (C) but haven't decided the order. What choices do you have? ABC, ACB, BAC, BCA, CAB, CBA
3. Permutations with Repetition	When something has n different types, there are \boldsymbol{n} choices each time. Choosing r of something that has n different types, the permutations are: $n \times n \times \ldots(r \text { times })=\boldsymbol{n}^{r}$	How many permutations are there for a three-number combination lock? 10 numbers to choose from $\{1,2, \ldots .10\}$ and we choose 3 of them $\rightarrow 10 \times 10 \times 10=10^{3}=1000$
4. Permutations without Repetition	We have to reduce the number of available choices each time. One you have chosen something, you cannot choose it again.	How many ways can you order 4 numbered balls? $4 \times 3 \times 2 \times 1=24$
5. Product Rule for Counting	If there are \boldsymbol{x} ways of doing something and y ways of doing something else, then there are $\boldsymbol{x y}$ ways of performing both.	To choose one of $\{A, B, C\}$ and one of $\{X, Y\}$ means to choose one of $\{A X, A Y, B X, B Y, C X, C Y\}$ The rule says that there are $3 \times 2=$ 6 choices.
6. Tree Diagrams	Tree diagrams show all the possible outcomes of an event and calculate their probabilities. All branches must add up to 1 when adding downwards. This is because the probability of something not happening is 1 minus the probability that it does happen. Multiply going across a tree diagram. Add going down a tree diagram.	
7. Independent Events	The outcome of a previous event does not influence/affect the outcome of a second event.	An example of independent events could be replacing a counter in a bag after picking it.
8. Dependent Events	The outcome of a previous event does influence/affect the outcome of a second event.	An example of dependent events could be not replacing a counter in a bag after picking it. 'Without replacement'
9. Probability Notation	$\mathbf{P}(\mathbf{A})$ refers to the probability that event A will occur. $\mathbf{P}\left(\mathbf{A}^{\prime}\right)$ refers to the probability that event A will not occur. $\mathbf{P}(A \cup B)$ refers to the probability that event A or B or both will occur.	P (Red Queen) refers to the probability of picking a Red Queen from a pack of cards. P (Blue') refers to the probability that you do not pick Blue. P (Blonde \cup Right Handed) refers to the probability that you pick

	P(A \cap B) refers to the probability that both events \mathbf{A} and \mathbf{B} will occur.	someone who is Blonde or Right Handed or both. P(Blonde \cap Right Handed) refers to the probability that you pick someone who is both Blonde and Right Handed.

	Definition/Tips						Example$\begin{gathered} \frac{\sin \theta}{1.9}=\frac{\sin 85}{2.4} \\ \sin \theta=\frac{1.9 \times \sin 85}{2.4}=0.78 \mathrm{c} \\ \theta=\sin ^{-1}(0.789)=52.1^{\circ} \end{gathered}$$x^{2}=9.6^{2}+7.8^{2}-(2 \times 9.6 \times 7.8$			
1. Exact Values for Angles in Trigonometry		0°	30°	45°	60°	90°				
	sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1				
	cos		$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0				
	tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	----				
2. Sine Rule	Use with non right angle triangles. Use when the question involves 2 sides and 2 angles. For missing side: $\frac{a}{\sin A}=\frac{b}{\sin B}$ For missing angle: $\frac{\sin A}{a}=\frac{\sin B}{b}$ There is an ambiguous case (where there are two potential answers) To find the two angles, use sine to find one, and then subtract your answer from 180 to find the other answer.									
3. Cosine Rule	Use with non right angle triangles. Use when the question involves 3 sides and 1 angle. For missing side: $a^{2}=b^{2}+c^{2}-2 b c \cos A$ For missing angle: $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$									

4. Graphs of Trigonometric Functions	$\begin{aligned} y & =\sin (x) \\ \text { for } 0 & \leq x \leq 360^{\circ} \end{aligned}$ $y=\cos (x)$ for $0 \leq x \leq 360^{\circ}$ $y=\tan (x)$ for $0 \leq x \leq 360^{\circ}$	
5. Area of a Triangle	Use when given the length of two sides and the included angle. $\text { Area of a Triangle }=\frac{1}{2} a b \sin C$	

5. Pictogram	Uses pictures or symbols to show the value of the data. A pictogram must have a key.	```Black F Red 且禹 Green [-5 =4 cars```
6. Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data, which is a series of data points spaced over uniform time intervals in time order.	
7. Two Way Tables	A table that organises data around two categories. Fill out the information step by step using the information given. Make sure all the totals add up for all columns and rows.	
8. Box Plots	The minimum, lower quartile, median, upper quartile and maximum are shown on a box plot. A box plot can be drawn independently or from a cumulative frequency diagram.	Students sit a maths test. The highest score is 19 , the lowest score is 8 , the median is 14 , the lower quartile is 10 and the upper quartile is 17 . Draw a box plot to represent this information.
9. Comparing Box Plots	Write two sentences. 1. Compare the averages using the medians for two sets of data. 2. Compare the spread of the data using the range or IQR for two sets of data. The smaller the range/IQR, the more consistent the data. You must compare box plots in the context of the problem.	'On average, students in class A were more successful on the test than class B because their median score was higher.' 'Students in class B were more consistent than class A in their test scores as their IQR was smaller.'

Knowledge Organiser Y10 Summarising Data

	Definition/Tips	Example			
1. Types of Data	Qualitative Data - non-numerical data Quantitative Data - numerical data Continuous Data - data that can take any numerical value within a given range. Discrete Data - data that can take only specific values within a given range.	Qualitative gender etc. Continuous etc. Discrete D shoe size	Data Data ta - nu tc.	ye co weigh mber	voltage children,
2. Grouped Data	Data that has been bundled in to categories. Seen in grouped frequency tables, histograms, cumulative frequency etc.	Foot length, $l,(\mathrm{~cm})$		Number of children	
		$10 \leqslant l<12$			5
		$12 \leqslant 1<17$		53	
3. Primary /Secondary Data	Primary Data - collected yourself for a specific purpose. Secondary Data - collected by someone else for another purpose.	Primary Da student for project. Secondary used to analy education	- da their ow Data - lyse lin nd ea	colle rese Censu betw ings.	ted by a arch data en
4. Mean	Add up the values and divide by how many values there are.	The mean of $3,4,7,6,0,4,6$ is$3+4+7+6+0+4+6$			
5. Mean from a Table	1. Find the midpoints (if necessary) 2. Multiply Frequency by values or midpoints 3. Add up these values 4. Divide this total by the Total Frequency If grouped data is used, the answer will be an estimate.	Heieht in cm	Frequency		
		Height in cm	8	5	$\stackrel{F}{8 \times 5} \mathbf{- 4 0}$
		10<h ≤ 30	10	20	20=200
		Total	24	enore!	450
		Estimated Mean height: $450 \div 24=$ 18.75 cm			
6. Median Value	The middle value. Put the data in order and find the middle one. If there are two middle values, find the number half way between them by adding them together and dividing by 2.	Find the me 6 Ordered: 2, Median $=5$	dian o $3,4,$	$\begin{aligned} & 4,5,2 \\ & 6,6,7 \end{aligned}$	$3,6,7$
7. Median from a Table	Use the formula $\frac{(n+1)}{2}$ to find the position of the median. n is the total frequency.	If the total frequency is 15 , the median will be the $\left(\frac{15+1}{2}\right)=$ 8th position			

8. Mode /Modal Value	Most frequent/common. Can have more than one mode (called bi-modal or multi-modal) or no mode (if all values appear once)	Find the mode: $4,5,2,3,6,4,7,8$, 4 Mode $=4$
9. Range	Highest value subtract the Smallest value Range is a 'measure of spread'. The smaller the range the more consistent the data.	Find the range: $3,31,26,102,37$, 97. $\text { Range }=102-3=99$
10. Outlier	A value that 'lies outside' most of the other values in a set of data. An outlier is much smaller or much larger than the other values in a set of data.	
11. Lower Quartile	Divides the bottom half of the data into two halves. $\mathrm{LQ}=Q_{1}=\frac{(n+1)}{4} t h \text { value }$	Find the lower quartile of: $2, \underline{\mathbf{3}}, 4,5$, 6, 6, 7 $Q_{1}=\frac{(7+1)}{4}=2 n d \text { value } \rightarrow 3$
12. Lower Quartile	Divides the top half of the data into two halves. $\mathrm{UQ}=Q_{3}=\frac{3(n+1)}{4} t h \text { value }$	Find the upper quartile of: $2,3,4,5$, 6, $\underline{\mathbf{6}}, 7$ $Q_{3}=\frac{3(7+1)}{4}=6 \text { th value } \rightarrow 6$
13. Interquartile Range	The difference between the upper quartile and lower quartile. $I Q R=Q_{3}-Q_{1}$ The smaller the interquartile range, the more consistent the data.	Find the IQR of: $2,3,4,5,6,6,7$ $I Q R=Q_{3}-Q_{1}=6-3=3$

Knowledge organiser Y10H Graphs and Graph Transformations

Key vocabulary	Definition/Tips	Example
1. Coordinates	Written in pairs. The first term is the $\mathbf{x -}$ coordinate (movement across). The second term is the y-coordinate (movement up or down)	 A: $(4,7)$ B: $(-6,-3)$
2. Linear Graph	Straight line graph. The equation of a linear graph can contain an x-term, a y-term and a number.	Example: Other examples: $\begin{aligned} & x=y \\ & y=4 \\ & x=-2 \\ & y=2 x-7 \\ & y+x=10 \\ & 2 y-4 x=12 \end{aligned}$
3. Quadratic Graph	A 'U-shaped' curve called a parabola. The equation is of the form $y=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$, where a, b and c are numbers, $\boldsymbol{a} \neq \mathbf{0}$. If $\boldsymbol{a}<\mathbf{0}$, the parabola is upside down.	
4. Cubic Graph	The equation is of the form $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{3}+$ k, where k is an number. If $\boldsymbol{a}>\mathbf{0}$, the curve is increasing. If $\boldsymbol{a}<\mathbf{0}$, the curve is decreasing.	
5. Reciprocal Graph	The equation is of the form $y=\frac{A}{x}$, where \boldsymbol{A} is a number and $\boldsymbol{x} \neq \mathbf{0}$. The graph has asymptotes on the \mathbf{x} axis and y-axis.	
6. Asymptote	A straight line that a graph approaches but never touches.	

$7 .$ Exponential Graph	The equation is of the form $\boldsymbol{y}=\boldsymbol{a}^{\boldsymbol{x}}$, where a is a number called the base. If $a>1$ the graph increases. If $\mathbf{0}<\boldsymbol{a}<\mathbf{1}$, the graph decreases. The graph has an asymptote which is the x-axis.	
8. $y=\sin x$	Key Coordinates: $(0,0),(90,1),(180,0),(270,-1),(360,0$ y is never more than 1 or less than -1 . Pattern repeats every 360°.	
9. $y=\cos x$	Key Coordinates: $(0,1),(90,0),(180,-1),(270,0),(360,1$ y is never more than 1 or less than -1 . Pattern repeats every 360°.	
10. $y=\tan x$	Key Coordinates: $\begin{gathered} (0,0),(45,1),(135,-1),(180,0) \\ (225,1),(315,-1),(360,0) \end{gathered}$ Asymptotes at $\boldsymbol{x}=\mathbf{9 0}$ and $\boldsymbol{x}=\mathbf{2 7 0}$ Pattern repeats every 360°.	
11. $f(x)+a$	Vertical translation up a units. $\binom{0}{a}$	
12. $f(x+a)$	Horizontal translation left a units. $\binom{-a}{0}$	
13. $-f(x)$	Reflection over the x-axis.	
14. $f(-x)$	Reflection over the y -axis.	

Key vocabulary	Definition/Tips	Example
1. Correlation	Correlation between two sets of data means they are connected in some way.	There is correlation between temperature and the number of ice creams sold.
2. Causality	When one variable influences another variable.	The more hours you work at a particular job (paid hourly), the higher your income from that job wis be.
3. Positive Correlation	As one value increases the other value increases.	
4. Negative Correlation	As one value increases the other value decreases.	\qquad
5. No Correlation	There is no linear relationship between the two.	
6. Strong Correlation	When two sets of data are closely linked.	
7. Weak Correlation	When two sets of data have correlation, but are not closely linked.	
8. Scatter Graph	A graph in which values of two variables are plotted along two axes to compare them and see if there is any connection between them.	
9. Line of Best Fit	A straight line that best represents the data on a scatter graph.	
10. Outlier	A value that 'lies outside' most of the other values in a set of data. An outlier is much smaller or much larger than the other values in a set of data.	

Key Vocabulary	Definition/Tips	Example
1. Area Under a Curve	To find the area under a curve, split it up into simpler shapes - such as rectangles, triangles and trapeziums that approximate the area.	
2. Tangent to a Curve	A straight line that touches a curve at exactly one point.	
3. Gradient of a Curve	The gradient of a curve at a point is the same as the gradient of the tangent at that point. 1. Draw a tangent carefully at the point. 2. Make a right-angled triangle. 3. Use the measurements on the axes to calculate the rise and run (change in y and change in x) 4. Calculate the gradient.	$\text { Gradient }=\frac{\begin{array}{c} \text { Time (hours) } \\ \text { Change in } y \end{array}}{\text { Change in } x}=\frac{16}{2}=8$
4. Rate of Change	The rate of change at a particular instant in time is represented by the gradient of the tangent to the curve at that point.	
5. DistanceTime Graphs	You can find the speed from the gradient of the line (Distance \div Time) The steeper the line, the quicker the speed. A horizontal line means the object is not moving (stationary).	
6. VelocityTime Graphs	You can find the acceleration from the gradient of the line (Change in Velocity \div Time) The steeper the line, the quicker the acceleration. A horizontal line represents no acceleration, meaning a constant velocity. The area under the graph is the distance.	

