	Keywords	
	Functional Group	An atom or group of atoms that give organic compounds their characteristic reactions
	Homologous series	A group of related organic compounds that have the same functional group
	Carboxylic Acid	A homologous series with the functional group -COOH
	Ester	Formed when a carboxylic acid reacts with an alcohol
	Alcohol	A homologous series with the functional group -OH
	Alkene	Unsaturated hydrocarbons

3. Strong vs Weak acids

Strong acids ionise completely eg:

$$H_2SO_{4(s)} \rightarrow 2H^+_{(aq)} + SO_4^{2-}_{(aq)}$$

(contain a C=C double bond)

Ionisation of weak acids is reversible ie:

$$CH_3COOH_{(aq)} \rightleftharpoons CH_3COO_{(aq)}^- + H_{(aq)}^+$$

This is called **partial ionisation**.

C10 Organic reactions - Triple

1. Alcohols

Combustion:

Alcohol + oxygen \rightarrow carbon dioxide + water

Reaction with sodium:

Sodium + ethanol → sodium ethoxide + Hydrogen

Reaction with an oxidising agent:

Alcohol + oxygen → carboxylic acid + water

4. Carboxylic acids

Reaction with carbonates:

Carboxylic acid + carbonate → salt + water + carbon dioxide

Reaction with alcohol:

Carboxylic acid + alcohol → ester + water

2. Alkenes

Reaction with the halogens:

Reaction with steam (hydration):

C2H4Br2

ethene + steam
$$\stackrel{\text{catalyst}}{\longleftarrow}$$
 ethanol C,H_4 + H,O $\stackrel{\text{catalyst}}{\longleftarrow}$ C,H_5OH

Reaction with hydrogen (hydrogenation):

5. Making esters

Esters are made when carboxylic acids react with alcohols in the presence of sulphuric acid acting as a catalyst.

When naming esters the alcohol is named first then the carboxylic acid. The **OATE** suffix is placed on the end of the chemical to tell you it is an ester

Methanoic acid + ethanol --> Ethyl methanoate + water