Chemistry Topic 4: Chemical calculations

1. Keywords

Conservation of mass	Mass (or atoms) cannot be created or destroyed.	
Relative atomic mass (A_{r})	Number of neutrons and protons.	
Relative formula mass (M_{r})	Sum of relative atomic masses	
Balanced equation	When the sum of the M_{r} on the left = the sum of the M_{r} on the right	
Mole	M_{r} or A_{r} in grams. Mass of 6.02×10^{23} atoms, molecules or ions.	
Limiting reactant (H)	The reactant which runs out first	
2. Relative formula mass (M_{r})		
Steps		Worked example - CO_{2}
Step 1 - Using the periodic table, determine relative atomic mass $\left(A_{r}\right)$ of each element.		$\begin{aligned} & \text { Carbon }=12 \\ & \text { Oxygen }=16 \end{aligned}$
Step 2 - Multiply the relative atomic mass by the number of each atom in the molecule.		$\begin{aligned} & \text { Carbon }=(1 \times 12)=12 \\ & \text { Oxygen }=(2 \times 16)=32 \end{aligned}$
Step 3 - Add up all the values		$12+32=44$

3. Moles

4. Equations and calculations (Higher)

number of moles $=$ mass \div relative formula mass

Worked example - Number of moles in 88 g of carbon dioxide $\left(\mathrm{CO}_{2}\right)$

Number of moles $=88 \mathrm{~g} \div 44 \mathrm{~g} / \mathrm{mol}$
Number of moles $=2$ moles

5. Masses to balanced equations (Higher)

Worked example - what mass of carbon is need to produce 132 g of carbon dioxide. $1 \mathrm{C}+1 \mathrm{O}_{2} \rightarrow 1 \mathrm{CO}_{2}$

	Carbon (C)	Carbon dioxide $\left(\mathrm{CO}_{2}\right)$
Mass	36 g	132 g
M_{r} or A_{r}	$12 \mathrm{~g} / \mathrm{mol}$	$44 \mathrm{~g} / \mathrm{mol}$
Number of moles	3 moles	3 moles
Ratio	1	

6. Concentration

$$
\text { concentration }\left(\mathrm{g} / \mathrm{dm}^{3}\right)=\frac{\text { amount of solute }(\mathrm{g})}{\text { volume of solution }\left(\mathrm{dm}^{1}\right)}
$$

Worked example - What is the concentration of a solution when 50 g of sodium hydroxide is dissolved in $200 \mathrm{~cm}^{3}$ of water.

Volume in $\mathrm{dm}^{3}=\frac{200 \mathrm{~cm}^{3}}{1000}=0.2 \mathrm{dm}^{3}$ Concentration $=\frac{50 \mathrm{~g}}{0.2 \mathrm{dm}^{3}}=250 \mathrm{~g} / \mathrm{dm}^{3}$

