Chemistry Topic 4: Chemical calculations

1. Keywords			4. Equations and calcul	ations (Higher)	
Conservation of mass	Mass (or atoms) cannot be created or destroyed.		number of moles = mass ÷ relative formula mass		
Relative atomic mass (A _r)	Number of neutrons and protons.		Worked example - Number of moles in 88g of carbon dioxide (CO ₂) Mass Number of moles = 88g ÷ 44 g/mol Number of moles = 2 moles Relative formula mass		
Relative formula mass (M _r)	Sum of relative atomic masses				Mass
Balanced equation	When the sum of the M_r on the left = the sum of the M_r on the right				
Mole	M_r or A_r in grams. Mass of 6.02×10^{23} atoms, molecules or ions.				mass
Limiting reactant (H)	The reactant whi	ch runs out first	5. Masses to balanced equations (Higher)		
2. Relative formula mass (M _r)			Worked example – what mass of carbon is need to produce 132g of carbon dioxide. 1 C + 1 $O_2 \rightarrow$ 1 CO ₂		
Steps		Worked example – CO ₂		Carbon (C)	Carbon dioxide (CO ₂)
Step 1 – Using the periodic table, determine relative atomic mass (A,) of each element.		Carbon = 12 Oxygen = 16	Mass	36g	132g
Step 2 – Multiply the relative atomic mass by the number of each atom in the molecule.		Carbon = (1 x 12) = 12 Oxygen = (2 x 16) = 32	M _r or A _r	12 g/mol	44 g/mol
			Number of moles	3 moles	3 moles
Step 3 – Add up all the values		12 + 32 = 44	Ratio	1	: 1
3. Moles 6. Concentration					
\div A _r or M _r \div 6.02 x10 ⁻²³			$concentration (g/dm^3) = \frac{amount of solute (g)}{volume of solution (dm^3)}$ Worked example – What is the concentration of a solution when 50g of		
Mass N	Лoles	Number of Particles	sodium hydroxide is dissolved in 200cm ³ of water.		
			Volume in dm ³ = $\frac{200 cm^3}{1000}$ = 0.2dm ³ Concentration = $\frac{50g}{0.2 dm^3}$ = 250g/dm ³		
x A _r or M _r x 6.02 x10 ⁻²³					old with