Knowledge Organiser Y9 Foundation – Maths - Number

Key Vocabulary	Definition/Tips	Example
Integer	A whole number that can be positive, negative or zero.	-3, 0, 92
Decimal	A number with a decimal point in it. Can be positive or negative.	3.7, 0.94, -24.07
Negative Number	A number that is less than zero . Can be decimals.	-8, -2.5
BIDMAS	An acronym for the order you should do calculations in. BIDMAS stands for	$6 + 3 \times 5 = 21$, not 45 $5^2 = 25$, where the 2 is the index/power.
	'Brackets, Indices, Division, Multiplication, Addition and Subtraction'.	$12 \div 4 \div 2 = 1.5, not 6$
	Indices are also known as 'powers' or 'orders'. With strings of division and multiplication, or strings of addition and subtraction, and no brackets, work from left to right.	
Prime Numbers	Prime numbers are special numbers, greater than 1, that have exactly two factors, themselves and 1.	2, 3, 5, 7, 11, 13, 17, 19 2 x 1 = 2, 3 x 1 = 3 etc
Factors	Factors are numbers that divide exactly into another number.	For example, the factors of 8 are: 1, 2, 4, 8 Factors can be shown in pairs. Each pair multiplies to make 8. 1 x 8 = 8 2 x 4 = 8
Multiples	Multiples are just extended times tables.	The multiples of 2 are all the numbers in the 2 times table, such as 2, 4, 6, 8, 10 and so on.
LCM	The lowest/least common multiple (abbreviated to LCM) is the lowest number that is a multiple of two or more subject-numbers.	For example, the common multiples of 4 and 5 are 20, 40, 60, 80 and so on. These are the numbers that are multiples of both 4 and 5. The LCM is therefore 20, as this is the lowest of all the common multiples.
HCF	A common factor is a factor that is shared by two or more numbers. For example, a common factor of 8 and 10 is 2, as 2 is a factor of 8, and 2 is also a factor of 10. The highest common factor (HCF) is found by finding all common factors of two numbers and selecting the largest one.	For example, 8 and 12 have common factors of 1, 2 and 4. The highest common factor is 4.

Prime factors	Prime factors are factors of a number that are, themselves, prime numbers.	The most common is to use prime factorisation with a prime factor tree . 40 20 20 20 20 50 Where the answer would be written: 2 x 2 x 2 x 5
Square numbers	A square number is a number multiplied by itself. This can also be called 'a number squared'. The symbol for squared is ² .	$2^2 = 2 \times 2 = 4$ $3^2 = 3 \times 3 = 9$ $4^2 = 4 \times 4 = 16$ etc
Cube Numbers	A cube number is a number multiplied by itself twice. This can also be called 'a number cubed'. The symbol for cubed is ³ .	$2^{3} = 2 \times 2 \times 2 = 8$ $3^{3} = 3 \times 3 \times 3 = 27$ $4^{3} = 4 \times 4 \times 4 = 64$ etc
Function machines	A function machine is a way of writing rules using a flow diagram.	$\boxed{ \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc }$
Rounding Decimal place	When rounding using decimal places(dp), the degree of accuracy that is required is usually given.	Round 248.561 to one and two decimal places. 248.5 61 to one decimal place is 248.6 248.56 1 to two decimal places is 248.56
Rounding Significant figures	Another way of rounding numbers is to count only the first few digits (maybe 1, 2 or 3 figures) that have a value attached to them. This method of rounding is called significant figures and it's often used with larger numbers, or very small numbers.	Round 248.561 to two and 3 significant figures. • 24 8.561 to two significant figures is 250 (first 2 numbers) • 248 .561 to three significant figures is 249 (first 3 numbers)
Multiplying decimals	Multiplying decimals works the same way as multiplying whole numbers.	Salve 3.4x2.1 Traditional Visual 3.4 x. 2.1 134 + 680 7.14 Answer: 7.14
Dividing decimals	Dividing decimals works the same way as dividing whole numbers. Ensure you align the decimal points.	5) 68.5 5) 68.5 5) 68.5

Knowledge Organiser Y9 Maths: Unit 2 Algebra

Key vocabulary	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols , numbers , or letters .	3x + 2 or 5y ²
2. Equation	A statement showing that two expressions are equal	2y – 17 = 15
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: ≡	$2x \equiv x + x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= L x W
5. Collecting terms	An algebraic expression may be simplified by collecting like terms. To reduce the number of terms in the expression, like terms are added or subtracted.	4x - 2x + 8 + 3x - 1 $4x + 3x - 2x + 8 - 1$
6. Function Machines	A function relates an input to an output. One or more operations are applied to an input to give an output. There is one output for a given input. An input value becomes an output value when the operations of a function machine are worked through from left to right. An input value can be found from the output when the inverse operations are worked through from right to left.	input—×3—output input—÷3—output
7. Substitution	Replace letters with numbers. Be careful of $5x^2$. You need to	a = 3, b = 2 and c = 5. Find: 1. $2a = 2 \times 3 = 6$ 2. $3a - 2b = 3 \times 3 - 2 \times 2 = 5$
8. The order of operations	square first, then multiply by 5. The order of operations is the order you work out the parts of an equation to give you the correct answer.	3. $7b^2 - 5 = 7 \times 2^2 - 5 = 23$ BIDMAS is an acronym used to tell you the correct order to complete a equation when there are different operations.

		BIDMAS stands for B rackets, I ndices, D ivision, M ult iplication, A ddition, S ubtraction.
9. Expanding brackets	To expand a single bracket , each term inside the bracket is multiplied by the expression outside the bracket.	Expand 3(a + 3) = 3xa + 3x3 (simplify) = 3a + 9
10. Factorising	To factorise an expression, rewrite it as a product of factors.	Factorise 10 + 4x (both have a common factor of 2) 2 x 5 + 2 x 2x Hence Factorised 2(5 + 2x)

Knowledge Organiser Y9 Maths: Unit 3 Graphs, tables and charts

Key vocabulary	Definition/Tips	Example
Data Collection	Collecting data is when you gather information in mathematics which you can then organise and analyse to answer questions.	Number of STDs Tally Number of children 5 1 2 4 5 7 8
Discrete	Quantitative data which can only take specific values such as shoe size.	Shoe size 2, 2.5, 3, 3.5 etc
Continuous	Quantitative data which can take any value such as time.	Time 1 hour, 1 hour 2 mins, 1 hour 2 mins 3 seconds etc
Frequency	Frequency is the number of times a particular value occurs in a set of data.	Red, blue, red, green, yellow red. The frequency of red is 3.
Frequency table	Usually we would record the frequency of data in a frequency table. Often using a Tally as shown to the right.	Marks Tally Frequency 1 /// 3 2 /// 3 3 // 2 4 /// 2 5 // 2 6 /// 5 7 /// 4 8 /// 5 9 // 2 10 // 2 Total 30
Stem and Leaf	A stem and leaf diagram shows numbers in a table format. It can be a useful way to organise data to find the median, mode and range of a set of data.	Key: 1 1 = 11 marks
Pictograms	Pictograms use pictures to represent data. To make sense, a pictogram must always have a key.	Alan Bob Chris Dave 4 pizzas
Pie Charts	Pie Charts show proportions, i.e. a fraction of a whole and NOT total amounts.	School A School B Tin cans Plastic bottles Tin cans Plastic bottles

Scatter graphs	Scatter graphs are a good way of displaying two sets of data to see if there is a correlation, or connection.	102 98 94 94
Line of best fit	A line of best fit is a sensible straight line that goes as centrally as possible through the coordinates plotted. It should also follow the same steepness of the crosses.	A A A A A A A A A A A A A A A A A A A
Correlation	Positive correlation means as one variable increases, so does the other variable. They have a positive connection. Negative correlation means as one variable increases, the other variable decreases. They have a negative connection. No correlation means there is no connection between the two variables.	Positive Correlation Negative Correlation No Correlation No Correlation
Histograms	A histogram looks like a bar chart, except the area of the bar, and not the height, shows the frequency of the data. (To find the frequency of each category you must find the area of each rectangle)	3 Alisup Country of the state o
Mode/Modal class	The mode is the value that occurs most often. The mode is the only average that can have no value, one value or more than one value.	Find the mode of each of the following sets of numbers: a) 3, 7, 1, 3, 4, 8, 3 (mode 3) b) 2, 7, 2, 1, 4, 7, 3 (mode 2 and 7)

Knowledge Organiser Y9 Maths Unit 4 Counting and comparing

Key Vocabulary	Definition/Tips	Example
Integer	A whole number that can be	-3,0,92
	positive, negative or zero.	27.004.24.07
Decimal	A number with a decimal point in	3.7, 0.94, -24.07
	it. Can be positive or negative. An inequality says that two values	7≠3 <i>x</i> ≠0
Inequalities	are not equal. $a \neq b$ means that a is	7+3 x+0
moquantics	not equal to b.	
	A mathematical expression	2/7 is a 'proper' fraction.
	representing the division of one	9/4 is an 'improper' or 'top-heavy'
Fraction	integer by another.	fraction.
liuotion	Fractions are written as two	
	numbers separated by a	
Numerator	horizontal line.	In the fraction 2/5, 2 is the numerator
Denominator	The top number of a fraction The bottom number of a fraction.	In the fraction 3/5, 3 is the numerator.
Denominator	A number formed of both an	3/5, 5 is the denominator. 3 3/5
Mixed Number	integer part and a fraction part.	is an example of a mixed number.
	Divide the numerator and	20/45 = 4/9
Simplifying	denominator by the highest	
Fractions	common factor.	
Equivalent	Fractions, which represent the	2/5 = 4/10 = 20/50 = 60/150 etc.
Fractions	same value.	
	To compare fractions, they each	Put in to ascending order :
	need to be rewritten so that they	3/4, 2/3, 5/6, 1/2
Comparing	have a common denominator.	Equivalent:
Fractions	Ascending means smallest to	9/12, 8/12, 10/12, 6/12 Correct order:
	biggest. Descending means biggest to	1/2, 2/3, 3/4, 5/6
	smallest.	172, 270, 574, 570
	Find the LCM of the	2/3+4/5
	denominators to find a common	Multiples of 3: 3, 6, 9, 12, 15
	denominator.	Multiples of 5: 5, 10, 15
Adding or	Use equivalent fractions to change	LCM of 3 and 5 = 15
Subtracting	each fraction to the common	2/3=1015
Fractions	denominator.	4/5=12/15 10/15+12/15=22/15=1 7/15
	Then just add or subtract the numerators and keep the	10/15+12/15-22/15-1 7/15
	denominator the same.	
	Multiply the numerators together	3/8 × 2/9 = 6/72 = 1/12
Multiplying	and multiply the denominators	
Fractions	together.	
	'Keep it, Flip it, Change it – KFC'	3/4 ÷ 5/6 =
	Keep the first fraction the same	$3/4 \times 6/5 =$
Dividing	Flip the second fraction upside	18/20 = 9/10
Fractions	down	
	Change the divide to a multiply	
	Multiply by the reciprocal of the second fraction.	
	SECULIA HACHUH.	

Percentage	Number of parts per 100.	31% means $\frac{31}{100}$
Finding 10%	To find 10%, divide by 10	10% of £36 = 36÷10 = £3.60
Finding 1%	To find 1%, divide by 100	1% of £8 = 8÷100 = £0.08
Percentage Change	$\frac{\textit{Difference}}{\textit{Original}} \times 100\%$	A games console is bought for £200 and sold for £250.
		% change = $\frac{50}{200} \times 100 = 25\%$
Fractions to	Divide the numerator by the	$\frac{3}{6} = 3 \div 8 = 0.375$
Decimals	denominator using the bus stop method.	0
Decimals to	Write as a fraction over 10, 100	$0.36 = \frac{36}{100} = \frac{9}{25}$
Fractions	or 1000 and simplify.	$\frac{0.30 - 100}{100} - \frac{25}{25}$
Percentages to Decimals	Divide by 100	$8\% = 8 \div 100 = 0.08$
Decimals to Percentages	Multiply by 100	$0.4 = 0.4 \times 100\% = 40\%$
Fractions to	Percentage is just a fraction out of	$\frac{3}{25} = \frac{12}{100} = 12\%$
Percentages	100. Make the denominator 100	$\frac{1}{25} - \frac{1}{100} - \frac{12}{70}$
	using equivalent fractions.	0
	When the denominator doesn't go	$\frac{9}{17} \times 100 = 52.9\%$
	in to 100, use a calculator and multiply the fraction by 100.	17
Percentages to	Percentage is just a fraction out of	14 7
Fractions	100. Write the percentage over	$14\% = \frac{14}{100} = \frac{7}{50}$
	100 and simplify.	100 30
	Value Added Tax. This is a tax	Find VAT ona price of £200
VAT	added on to the price of lots of the	£200 + 20% (10% = £20)
YAI	things that you can buy.	£200 + £40 = £240
	The current rate of VAT is 20%.	5 0000
Profit	Profit is the money made after	Expenses = £300
	If the expenses are more than the	Money made = £345, Profit = £45 Expenses = £300
Loss	money received, then it's	Money made = £245,
L033	considered a loss.	Loss = £55
	Simple interest is calculated as a	Every year, 7.5% of £250 will be
	percentage of the principal and	added as interest to Saoirse's
	stays the same over time.	account. 7.5% of £250=£18.75
Simple interest		Each year £18.75 interest will be
		added. After 3 years interest to be
		added =3×£18.75=£56.25.
		£250+£56.25=£306.25
	Compound interest is interest that	Daniel invests £400 at a compound
	is calculated on the principle plus	interest rate of 6%.
Compound	the amount of interest already	Interest earned in first year
Compound interest	earned.	=6% of £400 =£24 £400+£24 =£424
milerest	Therefore, the amount of money that earns interest increases every	Interest earned in second year
	year.	=6% of £424 =£25.44
	your.	£424+£25.44=£449.44
		~T_CT '

Knowledge Organisers Y9F Maths Unit 5 – Equations, inequalities, and sequences

Key Vocabulary	Definition/Tips	Example
Expression	A mathematical statement written using symbols , numbers , or letters .	3x + 2 or 5y ²
Equation	A statement showing that two expressions are equal	2y – 17 = 15
Identity	An equation that is true for all values of the variables An identity uses the symbol: ≡	$2x \equiv x + x$
Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= L x W
Collecting terms	An algebraic expression may be simplified by collecting like terms. To reduce the number of terms in the expression, like terms are added or subtracted.	4x - 2x + 8 + 3x - 1 $4x + 3x - 2x + 8 - 1$
Function Machines	A function relates an input to an output. One or more operations are applied to an input to give an output.	input—×3— output
	An input value becomes an output value when the operations of a function machine are worked through from left to right .	input—(÷3)—output
	An input value can be found from the output when the inverse operations are worked through from right to left .	
Substitution	Replace letters with numbers. Be careful of $5x^2$. You need to square first, then multiply by 5	a = 3, b = 2 and $c = 5$. Find: 1. $2a = 2 \times 3 = 6$ 2. $3a - 2b = 3 \times 3 - 2 \times 2 = 5$
Expanding brackets	square first, then multiply by 5. To expand a single bracket , each term inside the bracket is multiplied by the expression outside the bracket.	3. $7b^2 - 5 = 7 \times 2^2 - 5 = 23$ Expand 3(a + 3) = 3xa + 3x3 (simplify) = 3a + 9
Solve	To find the answer/value of something Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter.	Solve $2x - 3 = 7$ Add 3 on both sides $2x = 10$ Divide by 2 on both sides $x = 5$
Inverse	Opposite	The inverse of addition is subtraction.

		The inverse of multiplication is division.
Rearranging Formulae	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y = \frac{2x-1}{z}$ Multiply both sides by z $yz = 2x - 1$ Add 1 to both sides $yz + 1 = 2x$ Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
Writing Formulae	Substitute letters for words in the question.	Bob charges £3 per window and a £5 call out charge. $\mathcal{C} = 3N + 5$ Where N=number of windows and C=cost
Linear Sequence	A number pattern with a common difference .	2, 5, 8, 11 is a linear sequence
Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the third term of the sequence.
Term-to-term rule	A rule which allows you to find the next term in a sequence if you know the previous term .	First term is 2. Term-to-term rule is 'add 3' Sequence is: 2, 5, 8, 11
nth term	A rule which allows you to calculate the term that is in the nth position of the sequence. Also known as the 'position-to-term' rule. n refers to the position of a term in a sequence.	nth term is $3n - 1$ The 100^{th} term is $3 \times 100 - 1 = 299$
Fibonacci type sequences	A sequence where the next number is found by adding up the previous two terms	The Fibonacci sequence is: 1,1,2,3,5,8,13,21,34 An example of a Fibonacci-type sequence is: 4,7,11,18,29

Inequality	An inequality says that two values are not equal .	7 ≠ 3
		$x \neq 0$
	$a \neq b$ means that a is not equal to b.	
Inequality	x > 2 means x is greater than 2	State the integers that satisfy
symbols	x < 3 means x is less than 3	$-2 < x \le 4.$
	$x \ge 1$ means x is greater than or equal to 1	-1, 0, 1, 2, 3, 4
	$x \le 6$ means x is less than or equal to 6	., 0, 1, 2, 0, 1
Inequalities on a Number Line	Inequalities can be shown on a number line.	$x \ge 0$
	Open circles are used for numbers that are less than or greater than $(< or >)$	-5 -4 -3 -2 -1 0 1 2 3 4 5 x < 2
	Closed circles are used for numbers that are less than or equal or greater than or equal $(\le or \ge)$	$-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 \le x < 4$

Knowledge Organiser Y9F Unit 6 Angles

Key Vocabulary	Definition/Tips	Example
1. Types of Angles	Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°.	Acute Right Obtuse Reflex
2. Angle Notation	Can use one lower-case letters, e.g., θ or x Can use three upper-case letters, e.g., BAC	$A = \theta$ C
3. Angles at a Point	Angles around a point add up to 360°.	$\begin{vmatrix} d & a \\ c & b \end{vmatrix}$ $a+b+c+d=360^{\circ}$
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	$x = y$ $x + y = 180^{\circ}$
5. Opposite Angles	Vertically opposite angles are equal.	$\frac{x/y}{y/x}$
6. Alternate Angles	Alternate angles are equal. They look like Z angles, but never say this in the exam.	x/y
7.Corresponding Angles	Corresponding angles are equal. They look like F angles, but never say this in the exam.	- y/x
8. Co-Interior Angles	Co-Interior angles add up to 180°. They look like C angles, but never say this in the exam.	x/y
9. Angles in a Triangle	Angles in a triangle add up to 180°.	B 45° C

10. Types of Triangles	Right Angle Triangles have a 90° angle in. Isosceles Triangles have 2 equal sides and 2 equal base angles. Equilateral Triangles have 3 equal sides and 3 equal angles (60°). Scalene Triangles have different sides and different angles.	Right Angled Isosceles 60° 60 Equilateral Scalene
11. Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.	A + B + C + D = 360
12. Polygon	A 2D shape with only straight edges.	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular	A shape is regular if all the sides and all the angles are equal .	
14. Sum of Interior	$(n-2) \times 180$	Sum of Interior Angles in a
Angles	where n is the number of sides.	Decagon
		$= (10 - 2) \times 180 = 1440^{\circ}$
15. Size of Interior	$(n-2)\times 180$	Size of Interior Angle in a Regular
Angle in a Regular	$\frac{}{n}$	Pentagon =
Polygon	You can also use the formula:	$\frac{(5-2)\times 180}{5} = 108^{\circ}$
	180 – Size of Exterior Angle	5
16. Size of Exterior	360	Size of Exterior Angle in a Regular
Angle in a Regular	n	Octagon =
Polygon	You can also use the formula:	$\frac{360}{8} = 45^{\circ}$
	180 – Size of Interior Angle	8

Knowledge Organiser Y9F Unit 7 and 8

Key Vocabulary	Definition/Tips	Example
1. Types of Data	Qualitative Data – non-numerical data	Qualitative Data – eye colour, gender etc.
	Quantitative Data – numerical data Continuous Data – data that can take any numerical value within a given range.	Continuous Data – weight, voltage etc.
	Discrete Data – data that can take only specific values within a given range.	Discrete Data – number of children, shoe size etc.
2. Grouped	Data that has been bundled in to categories.	Foot length, I, (cm) Number of children
Data		10 ≤ <i>l</i> < 12 5
	Seen in grouped frequency tables, histograms, cumulative frequency etc.	12 ≤ <i>l</i> < 17 53
3. Primary /Secondary Data	Primary Data – collected yourself for a specific purpose. Secondary Data – collected by someone else for another purpose.	Primary Data – data collected by a student for their own research project. Secondary Data – Census data used to analyse link between education and earnings.
4. Mean	Add up the values and divide by how many values there are.	The mean of 3, 4, 7, 6, 0, 4, 6 is $\frac{3+4+7+6+0+4+6}{7} = 5$
5. Mean from a Table	Find the midpoints (if necessary) Multiply Frequency by values or midpoints Add up these values Divide this total by the Total Frequency If grouped data is used, the answer will be an estimate.	Height in cm Frequency Midpoint $F \times M$ $0 < h \le 10$ 8 5 $8 \times 5 = 40$ $10 < h \le 30$ 10 20 $10 \times 20 = 200$ $30 < h \le 40$ 6 35 $6 \times 35 = 210$ Total 24 Ignore! 450 Estimated Mean height: $450 \div 24 =$ 18.75cm
6. Median Value	The middle value. Put the data in order and find the middle one. If there are two middle values, find the number half way between them by adding them together and dividing by 2.	Find the median of: 4, 5, 2, 3, 6, 7, 6 Ordered: 2, 3, 4, 5 , 6, 6, 7 Median = 5
7. Median	Use the formula $\frac{(n+1)}{2}$ to find the	If the total frequency is 15, the
from a Table	position of the median. n is the total frequency.	median will be the $\left(\frac{15+1}{2}\right) = 8th$ position
8. Mode /Modal Value	Most frequent/common. Can have more than one mode or no mode (if all values appear once)	Find the mode: 4, 5, 2, 3, 6, 4, 7, 8, 4 Mode = 4
9. Range	Highest value subtract the Smallest value Range is a 'measure of spread'. The smaller the range the more consistent the data.	Find the range: 3, 31, 26, 102, 37, 97. Range = 102-3 = 99

10. Outlier	A value that 'lies outside' most of the	12 Outlier
	other values in a set of data.	10 8
	An outlier is much smaller or much	6
	larger than the other values in a set of	2
	data.	0 20 40 60 80 100
11. Lower	Divides the bottom half of the data	Find the lower quartile of: 2, 3 , 4, 5,
Quartile	into two halves.	6, 6, 7
	$LQ = Q_1 = \frac{(n+1)}{4}th \text{ value}$	$Q_1 = \frac{(7+1)}{4} = 2nd \text{ value } \to 3$
40.1	T	$Q_1 = \frac{1}{4} = 2\pi\alpha \text{ value } 7.5$
12. Lower	Divides the top half of the data into	Find the upper quartile of: 2, 3, 4, 5,
Quartile	two halves.	6, 6 , 7
	$oxed{UQ} = oldsymbol{Q}_3 = rac{3(n+1)}{4} oldsymbol{th}$ value	$Q_3 = \frac{3(7+1)}{4} = 6th \text{ value } \to 6$
13.	The difference between the upper	Find the IQR of: 2, 3, 4, 5, 6, 6, 7
Interquartile	quartile and lower quartile.	
Range	$IQR = Q_3 - Q_1$	$IQR = Q_3 - Q_1 = 6 - 3 = 3$
	The smaller the interquartile range,	
	the more consistent the data.	
14. Stem and	A stem and leaf diagram shows	Key: 1 1 = 11 marks
Leaf	numbers in a table format. It can be a	0 9
	useful way to organise data to find the	1 1 6 7 8 2 1 2 7 7 8 8 9
	median, mode and range of a set of	3 0 0 1 5 6 7 8 9
	data.	4 0 1 2 5
15. Perimeter	The total distance around the outside	8 cm
	of a shape.	5 cm
	Units include: <i>mm</i> , <i>cm</i> , <i>m</i> etc.	P = 8 + 5 + 8 + 5
		=26cm
16. Area	The amount of space inside a shape.	
	· ·	
	Units include: mm^2 , cm^2 , m^2	
47 4		9 cm
17. Area of a	Length x Width	
Rectangle		4 cm
40. 4		$A = 36cm^2$
18. Area of a	Base x Perpendicular Height	
Parallelogra	Not the slant height.	4cm 3cm
m		$A = 21cm^2$
19. Area of a	Base x Height ÷ 2	A = 210 M
Triangle	Base x neight + 2	9
Thangle		4 \5
		$A = 24cm^2$
20. Area of a	Split in to two triangles and use the	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Kite	method above.	2.2m
		* 4 - 0 0 · 2
04 A 6	(a b)	$\stackrel{\text{8m}}{\longrightarrow} A = 8.8m^2$
21. Area of a	$\frac{(a+b)}{2} \times h$	
Trapezium	${2}$ $\times n$	5 cm
		$\stackrel{\text{16 cm}}{\longleftarrow} A = 55cm^2$
		<u>. </u>