Knowledge Organiser Y10 H Shape Transformations

Key Vocabularv	Definition/Tips	Example
1. Translation	Translate means to move a shape . The shape does not change size or orientation .	Q 3 3 9 9 Q 4 4 8 7 4 8 7 4 8 7 7 4 8 7 7 4 8 7 7 4 8 7 7 7 7
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{2}$ means '1 left 5 down'
2 Detetion		L-5/ mound i fielt, o down
3. Rotation	shape is turned around a point.	about (0,1)
	Use tracing paper.	x. Y'
4. Reflection	The size does not change, but the shape is ' flipped ' like in a mirror .	Reflect shape C in the line $y = x$
	Line $x =$? is a vertical line. Line $y =$? is a horizontal line. Line $y = x$ is a diagonal line.	5 8 6 4 3 2 A C B' X 4 5 4 C B' X 4 5 4 5 4 5 4 5 4 5 4 5 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7
5. Enlargement	The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = 3 means '3 times larger = multiply by 3' Scale Factor = ½ means 'half the

6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around.	A to B is an enlargement SF 2 about the point (2,1)
7. Describing Transformati ons	Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details.	 Translation, Vector Rotation, Direction, Angle, Centre Reflection, Equation of mirror line Enlargement, Scale factor, Centre of enlargement
8. Negative Scale Factor Enlargement s	Negative enlargements will look like they have been rotated . SF = -2 will be rotated, and also twice as big.	Enlarge ABC by scale factor -2, centre (1,1)
9. Invariance	A point, line or shape is invariant if it does not change/move when a transformation is performed. An invariant point 'does not vary'.	If shape P is reflected in the $y - axis$, then exactly one vertex is invariant.

Knowledge Organiser Y10 Loci and constructions

Key Vocabulary	Definition/Tips	Example
1. Parallel	Parallel lines never meet.	
2. Perpendicula r	Perpendicular lines are at right angles. There is a 90° angle between them.	
3. Vertex	A corner or a point where two lines meet.	A A C C
4. Angle Bisector	Angle Bisector: Cuts the angle in half.	
	 Place the sharp end of a pair of compasses on the vertex. Draw an arc, marking a point on each line. Without changing the compass put the compass on each point and mark a centre point where two arcs cross over. Use a ruler to draw a line through the vertex and centre point. 	Angle Bisector
5. Perpendicula r Bisector	Perpendicular Bisector: Cuts a line in half and at right angles.	X
	 Put the sharp point of a pair of compasses on A. Open the compass over half way on 	Line Bisector
	 the line. 3. Draw an arc above and below the line. 4. Without changing the compass, repeat from point B. 5. Draw a straight line through the two intersecting arcs. 	X
6. Perpendicula r from an External	The perpendicular distance from a point to a line is the shortest distance to that line.	
Point	 Put the sharp point of a pair of compasses on the point. Draw an arc that crosses the line twice. 	

	 Place the sharp point of the compass on one of these points, open over half way and draw an arc above and below the line. Repeat from the other point on the line. Draw a straight line through the two intersecting arcs. 	
7.	Given line PQ and point R on the line:	
Perpendicula r from a Point on a Line	 Put the sharp point of a pair of compasses on point R. Draw two arcs either side of the point of equal width (giving points S and T) Place the compass on point S, open over halfway and draw an arc above the line. 	P S R T Q
	4. Repeat from the other arc on the line (point T).5. Draw a straight line from the intersecting arcs to the original point on the line.	
8. Constructing Triangles (Side, Side, Side)	 Draw the base of the triangle using a ruler. Open a pair of compasses to the width of one side of the triangle. Place the point on one end of the line and draw an arc. Repeat for the other side of the triangle at the other end of the line. Using a ruler, draw lines connecting the ends of the base of the triangle to the point where the arcs intersect. 	
9. Constructing Triangles (Side, Angle, Side)	 Draw the base of the triangle using a ruler. Measure the angle required using a protractor and mark this angle. Remove the protractor and draw a line of the exact length required in line with the angle mark drawn. Connect the end of this line to the other end of the base of the triangle. 	B 50° 7cm
10. Constructing Triangles (Angle, Side, Angle)	 Draw the base of the triangle using a ruler. Measure one of the angles required using a protractor and mark this angle. Draw a straight line through this point from the same point on the base of the triangle. 	y <u>42°</u> <u>51°</u> Z 8.3cm

	1	
	4. Repeat this for the other angle on the	
	other end of the base of the triangle.	
11.	1. Draw the base of the triangle using a	
Constructing	ruler.	
an Equilateral	2. Open the pair of compasses to the	11
Triangle (also	exact length of the side of the triangle.	
makes a 60°	3. Place the sharp point on one end of	
angle)	the line and draw an arc.	
	4. Repeat this from the other end of the	
	line.	MathBits.com
	5. Using a ruler, draw lines connecting	A B
	the ends of the base of the triangle to	10 39 XARE
	the point where the arcs intersect.	
12. Loci and	A locus is a path of points that follow	2 2
Regions	a rule.	×
	For the locus of points closer to B	AB
	than A create a perpendicular	<u> </u>
	bisector between A and B and shade	l.
	the side closer to B	Points Closer to B than A.
	For the locus of points equidistant	\frown
	from A, use a compass to draw a	2cm . 2cm
	circle . centre A.	
		Points less than Points more than
		2cm from A 2cm from A
		_ X
	For the locus of points equidistant to	
	line X and line Y, create an angle	× ×
	bisector.	1
	For the locus of points a set distance	\mathbf{D}
	from a line, create two semi-circles at	
	either end joined by two parallel lines .	
13.	A point is equidistant from a set of	
Equidistant	objects if the distances between that	
	point and each of the objects is the	
	same.	

Knowledge Organiser Y10 Simultaneous Equations

Key	Definition/Tips	Example
1. Simultaneous Equations	A set of two or more equations , each involving two or more variables (letters).	2x + y = 7 $3x - y = 8$ $x = 3$
	The solutions to simultaneous equations satisfy both /all of the equations .	y = 1
2. Variable	A symbol , usually a letter , which represents a number which is usually unknown.	In the equation $x + 2 = 5$, x is the variable.
3. Coefficient	A number used to multiply a variable.	6z
	It is the number that comes before/in front of a letter.	6 is the coefficient z is the variable
4. Solving Simultaneous Equations (by Elimination)	 Balance the coefficients of one of the variables. Eliminate this variable by adding or subtracting the equations (Same Sign Subtract, Different Sign Add) Solve the linear equation you get using the other variable. Substitute the value you found back into one of the previous equations. Solve the equation you get. Check that the two values you get satisfy both of the original equations. 	5x + 2y = 9 $10x + 3y = 16$ Multiply the first equation by 2. 10x + 4y = 18 $10x + 3y = 16$ Same Sign Subtract (+10x on both) y = 2 Substitute $y = 2$ in to equation. $5x + 2 \times 2 = 9$ $5x + 4 = 9$ $5x = 5$ $x = 1$
5. Solving Simultaneous Equations (by Substitution)	 Rearrange one of the equations into the form y = or x = Substitute the right-hand side of the rearranged equation into the other equation. Expand and solve this equation. Substitute the value into the y = or x = equation. Check that the two values you get satisfy both of the original equations. 	Solution: $x = 1, y = 2$ y - 2x = 3 3x + 4y = 1 Rearrange: $y - 2x = 3 \rightarrow y = 2x + 3$ Substitute: $3x + 4(2x + 3) = 1$ Solve: $3x + 8x + 12 = 1$ 11x = -11 x = -1 Substitute: $y = 2 \times -1 + 3$ y = 1 Solution: $x = -1, y = 1$

6. Solving	Draw the graphs of the two equations.	v = 2x - 1
Simultaneous		
Equations	The solutions will be where the lines	- X
(Graphically)	meet.	y = 5 - x
	The colution can be written as a	
	coordinate	
	coordinate.	
		y = 5 - x and $y = 2x - 1$.
		They meet at the point with
		coordinates (2,3) so the answer is
		x = 2 and $y = 3$
7. Solving	Method 1: If both equations are in the	Example 1
Linear and	same form (eg. Both $y =$):	Solve
Quadratic	1. Set the equations equal to each	$y = x^2 - 2x - 5$ and $y = x - 1$
Simultaneous	other.	
Equations	2. Rearrange to make the equation	$x^2 - 2x - 5 = x - 1$
	equal to zero.	$x^2 - 3x - 4 = 0$
	3. Solve the quadratic equation.	(x-4)(x+1) = 0
	of the equations	x = 4 and $x = -1$
		y = 4, $1 = 2$ and
	Method 2 [.] If the equations are not in	y = 4 = 1 = 5 and y = -1 = 1 = -2
	the same form:	y = 1 $1 = 2$
	1. Rearrange the linear equation into	Answers [.] (4 3) and (-1 -2)
	the form $y = \dots$ or $x = \dots$	
	2. Substitute in to the quadratic	Example 2
	equation.	Solve $x^2 + y^2 = 5$ and $x + y = 3$
	3. Rearrange to make the equation	
	equal to zero.	x = 3 - y
	4. Solve the quadratic equation.	$(3-y)^2 + y^2 = 5$
	5. Substitute the values back in to one	$9 - 6y + y^2 + y^2 = 5$
	or the equations.	$2y^2 - 6y + 4 = 0$
	You should get two nairs of solutions	$y^2 - 3y + 2 = 0$
	(two values for γ two values for γ)	(y-1)(y-2) = 0
	$(wo values for \lambda, two values for y.)$	y = 1 and $y = 2$
	Graphically, you should have two	x = 2 1 = 2 and $x = 2$ 2 = 1
	points of intersection.	x - 5 - 1 = 2 and $x = 3 - 2 = 1$
	-	Answers: $(2,1)$ and $(1,2)$

Knowledge Organiser Y10 Further Quadratics

Key vocabularv	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form $ax^2 + bx + c$	Examples of quadratic expressions: x^2
	where a, b and c are numbers, $a \neq 0$	$8x^2 - 3x + 7$
		Examples of non-quadratic
		$2x^3 - 5x^2$
		9x - 1
2. Factorising	When a quadratic expression is in the	$x^{2} + 7x + 10 = (x + 5)(x + 2)$
Quadratics	form $x^2 + bx + c$ find the two numbers	(because 5 and 2 add to give 7 and multiply to give 10)
	give c.	$x^{2} + 2x - 8 = (x + 4)(x - 2)$
		(because +4 and -2 add to give +2
0. D'''		and multiply to give -8)
3. Difference	An expression of the form $a^2 - b^2$ can be factorised to give $(a + b)(a - b)$	$x^{2} - 25 = (x + 5)(x - 5)$ $16x^{2} - 81 - (4x + 9)(4x - 9)$
Squares	be factorised to give $(u + b)(u - b)$	10x - 01 - (4x + 9)(4x - 9)
4. Solving	Isolate the x^2 term and square root	$2x^2 = 98$
Quadratics	both sides.	$x^2 = 49$
$(ax^2 = b)$	a negative solution.	$x = \pm 7$
5. Solving	Factorise and then solve = 0.	$x^2 - 3x = 0$
Quadratics		x(x-3) = 0
$(ax^2 + bx = 0)$		x = 0 or x = 3
6. Solving	Factorise the quadratic in the usual	Solve $x^2 + 3x - 10 = 0$
Quadratics	way. Solve = 0	Factorise: $(x + 5)(x - 2) = 0$
by factorising $(a = 1)$	Make sure the equation = 0 before factorising.	x = -5 or x = 2
7. Quadratic	A ' U-shaped ' curve called a parabola .	y ↑ y = x ² -4x-5
Graph	I ne equation is of the form $y = ar^2 + br + c$ where a b and c are	
	$y = ax + bx + c$, where a, b and c are numbers, $a \neq 0$.	-1 5 x
	If $a < 0$, the parabola is upside down .	(2,-9)
8. Roots of a Quadratic	A root is a solution .	4
	The roots of a quadratic are the x -	2 1 1 2 3 4
	intercepts of the quadratic graph.	
9. Turning	A turning point is the point where a	
Point of a	quadratic turns.	\land
Qualitatio	On a positive parabola , the turning	
	point is called a minimum .	
	On a negative parabola , the turning	\checkmark / \land
10.	When a quadratic is in the form	Factorise $6x^2 + 5x - 4$
Factorising	$ax^2 + bx + c$	

Quadratics when $a \neq 1$ 11. Solving	 Multiply a by c = ac Find two numbers that add to give b and multiply to give ac. Re-write the quadratic, replacing bx with the two numbers you found. Factorise in pairs – you should get the same bracket twice Write your two brackets – one will be the repeated bracket, the other will be made of the factors outside each of the two brackets. 	1. $6 \times -4 = -24$ 2. Two numbers that add to give +5 and multiply to give -24 are +8 and -3 3. $6x^2 + 8x - 3x - 4$ 4. Factorise in pairs: 2x(3x + 4) - 1(3x + 4) 5. Answer = $(3x + 4)(2x - 1)$ Solve $2x^2 + 7x - 4 = 0$
Quadratics by Factorising $(a \neq 1)$	way. Solve = 0 Make sure the equation = 0 before factorising.	Factorise: $(2x - 1)(x + 4) = 0$ $x = \frac{1}{2} \text{ or } x = -4$
12. Completing the Square (when $a = 1$)	A quadratic in the form $x^2 + bx + c$ can be written in the form $(x + p)^2 + q$ 1. Write a set of brackets with <i>x</i> in and half the value of <i>b</i> . 2. Square the bracket. 3. Subtract $\left(\frac{b}{2}\right)^2$ and add <i>c</i> . 4. Simplify the expression. You can use the completing the square form to help find the maximum or minimum of quadratic graph.	Complete the square of $y = x^2 - 6x + 2$ Answer: $(x-3)^2 - 3^2 + 2$ $= (x-3)^2 - 7$ The minimum value of this expression occurs when $(x-3)^2 =$ 0, which occurs when $x = 3$ When $x = 3$, $y = 0 - 7 = -7$ Minimum point = $(3, -7)$
13. Completing the Square (when $a \neq 1$)	A quadratic in the form $ax^2 + bx + c$ can be written in the form $\mathbf{p}(x + q)^2 + r$ Use the same method as above, but factorise out <i>a</i> at the start.	Complete the square of $4x^2 + 8x - 3$ Answer: $4[x^2 + 2x] - 3$ $= 4[(x + 1)^2 - 1^2] - 3$ $= 4(x + 1)^2 - 4 - 3$ $= 4(x + 1)^2 - 7$
14. Solving Quadratics by Completing the Square	Complete the square in the usual way and use inverse operations to solve .	Solve $x^{2} + 8x + 1 = 0$ Answer: $(x + 4)^{2} - 4^{2} + 1 = 0$ $(x + 4)^{2} - 15 = 0$ $(x + 4)^{2} = 15$ $(x + 4) = \pm\sqrt{15}$ $x = -4 \pm \sqrt{15}$
15. Solving Quadratics using the Quadratic Formula	A quadratic in the form $ax^2 + bx + c =$ 0 can be solved using the formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Use the formula if the quadratic does not factorise easily.	Solve $3x^2 + x - 5 = 0$ Answer: a = 3, b = 1, c = -5 $x = \frac{-1 \pm \sqrt{1^2 - 4 \times 3 \times -5}}{2 \times 3}$ $x = \frac{-1 \pm \sqrt{61}}{6}$ x = 1.14 or -1.47 (2 d. p.)

	Knowledge Organiser Y10 Inequalities	
Кеу	Definition/Tips	Example
vocabulary		
1. Inequality	An inequality says that two values are	7 ≠ 3
	not equal.	
	$a \neq b$ means that a is not equal to b.	$x \neq 0$
2. Inequality	x > 2 means x is greater than 2	State the integers that satisfy
symbols	x < 3 means x is less than 3	$-2 < x \le 4.$
	$x \ge 1$ means x is greater than or	-1, 0, 1, 2, 3, 4
	equal to 1	
	$x \le 6$ means x is less than or equal	
	to 6	
3.	Inequalities can be shown on a number	
Inequalities	line.	-2 -1 0 1 2 3 $x \ge 0$
on a Number	that are less than an greater than (· ← − − • ·
Line	that are less than or greater than (<	•••••••••••••
	Closed circles are used for numbers	-5 -4 -3 -2 -1 0 1 2 3 4 5 x < 2
	that are less than or equal or greater	
	than or equal $(< ar >)$	-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 < x < 4
4. Graphical	Inequalities can be represented on a	Shade the region that satisfies:
Inequalities	coordinate grid.	v > 2x, $x > 1$ and $v < 3$
•	If the inequality is strict $(x > 2)$ then	y = 2x
	use a dotted line .	-4 $y = 3$
	If the inequality is not strict ($x \le 6$)	R
	then use a solid line .	-2
	Shade the region which satisfies all	
	the inequalities.	9 2 4
5. Quadratic	Sketch the quadratic graph of the	Solve the inequality $x^2 - x - 12 < 0$
Inequalities	inequality.	
	If the expression is $\sum a_{n} \ge then the$	Sketch the quadratic:
	If the expression is $> 0r \ge$ then the approximation in the provestion in the provided of the	3
	If the expression is $< ar <$ then the	-3
	answer will be below the x-axis	
	Look carefully at the inequality symbol	
	in the question.	The required region is below the x-
		axis, so the final answer is:
	Look carefully if the quadratic is a	-3 < x < 4
	positive or negative parabola.	If the question had been > 0 , the
		answer would have been:
		x < -3 or x > 4
6. Set	A set is a collection of things, usually	{3, 6, 9} is a set.
Notation	numbers, denoted with brackets { }	$\int v v > n$
	$\{x \mid x \ge 7\}$ means 'the set of all x's,	
	such that x is greater than or equal to 7'	1 th
	The 'x' can be replaced by any letter.	the set of all x such that x is greater than zero
	Some people use ':' instead of ' '	$\{x: -2 \le x < 5\}$

Knowledge Organiser Y10 Probability

Topic/Skill	Definition/Tips	Example
1. Probability	The likelihood/chance of something	
	happening.	
	Is expressed as a number between 0	Impossible Unlikely Even Chance Likely Certain
	(impossible) and 1 (certain).	
	Can be expressed as a fraction,	
	unlikely, even chance etc.)	1-in-6 Chance 4-in-5 Chance
2 Probability	P(Δ) refers to the probability that	P(Red Queen) refers to the
Notation	event A will occur	probability of picking a Red Queen
		from a pack of cards.
3. Theoretical	Number of Favourable Outcomes	Probability of rolling a 4 on a fair 6-
Probability	Total Number of Possible Outcomes	sided die = $\frac{1}{6}$.
4. Relative	Number of Successful Trials	A coin is flipped 50 times and lands
Frequency	Total Number of Trials	on Tails 29 times.
		The relative frequency of getting
		Tails = $\frac{29}{50}$.
5. Expected	To find the number of expected	The probability that a football team
Outcomes	outcomes, multiply the probability by	wins is 0.2 How many games would
	the number of trials.	you expect them to win out of 40?
		$0.2 \times 40 = 8 games$
6. Exhaustive	Outcomes are exhaustive if they cover	When rolling a six-sided die, the
	the entire range of possible	outcomes 1, 2, 3, 4, 5 and 6 are
	The probabilities of an exhaustive set	the possible outcomes
	of outcomes adds up to 1.	the possible outcomes.
7. Mutually	Events are mutually exclusive if they	Examples of mutually exclusive
Exclusive	cannot happen at the same time.	events:
	The probabilities of an exhaustive set	- Turning left and right
	of mutually exclusive events adds up	- Heads and Tails on a coin
	to 1.	Examples of non mutually exclusive
		- King and Hearts from a deck of
		cards because you can nick the
		King of Hearts
8. Frequency	A diagram showing how information is	Wears glasses
Tree	categorised into various categories.	18
	The numbers at the ends of branches	8015 Does not wear glasses
	tells us how often something happened	Q
	(trequency).	Ging Wears glasses
	I ne lines connected the numbers are	
	called branches .	Does not wear glasses
9. Sample	The set of all possible outcomes of	+ 1 2 3 4 5 6
Space	an experiment.	1 2 3 4 5 6 7 2 3 4 5 6 7 8
		3 4 5 6 7 8 9
		4 5 6 7 8 9 10 5 6 7 8 9 10 11
		6 7 8 9 10 11 12

1.	A collection of things, where the order	How many combinations of two
Combination	does not matter.	ingredients can you make with
		apple, banana and cherry?
		Apple, Banana/ Apple, Cherry
		Banana, Cherry/ 3 combinations
2.	A collection of things, where the order	You want to visit the homes of three
Permutation	does matter.	friends, Alex (A), Betty (B) and
		Chandra (C) but haven't decided
		the order. What choices do you
		have?
		ABC, ACB, BAC, BCA, CAB, CBA
3.	When something has n different types,	How many permutations are there
Permutations	there are <i>n</i> choices each time.	for a three-number combination
with	Choosing r of something that has n	lock? 10 numbers to choose from
Repetition	different types, the permutations are:	{1, 2,10} and we choose 3 of
	$n \times n \times (r \ times) = \mathbf{n}^r$	them $\rightarrow 10 \times 10 \times 10 = 10^3 = 1000$
4.	We have to reduce the number of	How many ways can you order 4
Permutations	available choices each time.	numbered balls?
without	One you have chosen something, you	$4 \times 3 \times 2 \times 1 = 24$
Repetition	cannot choose it again.	
5. Product	If there are x ways of doing	To choose one of { <i>A</i> , <i>B</i> , <i>C</i> } and one
Rule for	something and y ways of doing	of { <i>X</i> , <i>Y</i> } means to choose one of
Counting	something else, then there are xy	$\{AX, AY, BX, BY, CX, CY\}$
	ways of performing both.	The rule says that there are $3 \times 2 =$
		6 choices.
6. Tree	Tree diagrams show all the possible	Bag A Bag B
Diagrams	outcomes of an event and calculate	1red
	their probabilities.	1 3
	All branches must add up to 1 when	is red
	adding downwards.	- black
	This is because the probability of	
	something not happening is 1 minus	4 3 red
	the probability that it does happen.	$\frac{1}{5}$ black \leq
	Multiply going across a tree diagram.	- black
_	Add going down a tree diagram.	3
	The outcome of a previous event	An example of independent events
Independent	does not influence/affect the	could be <u>replacing</u> a counter in a
Events	Outcome of a second event.	bag after picking it.
8. Dependent	I ne outcome of a previous event	An example of dependent events
Events	does influence/affect the outcome of	could be not replacing a counter in
	a second event.	a bag aller picking it.
0 Probability	$\mathbf{P}(\mathbf{\Lambda})$ refers to the probability that	D(Ped Oueen) refers to the
9. FIODADIIILY	over A will occur	r (Neu Queen) relets to the
INULALIUIT	Event A will occur. $\mathbf{D}(\mathbf{A}')$ refers to the probability that	from a pack of cards
	event A will not occur	P(Rlue') refers to the probability that
	$\mathbf{D}(\mathbf{A} \cup \mathbf{B})$ refers to the probability that	vou do not nick Rlue
	$r (A \cup B)$ released une probability that	D(Blanda L) Dight Handad) refere to
	e^{-1} event A <u>or</u> b <u>or</u> both will occur.	the probability that you pick
1	1	

	P(A ∩ B) refers to the probability that <u>both</u> events A and B will occur.	someone who is Blonde or Right Handed or both. P(Blonde ∩ Right Handed) refers to the probability that you pick someone who is both Blonde and
		Right Handed.
10. Venn	A Venn Diagram shows the	$A \cup B$ $A \cap B$
Diagrams	relationship between a group of different things and how they overlap. You may be asked to shade Venn Diagrams as shown below and to the	
	$A \cup B \qquad A \cap B A \cap B \cap B \cap B A \cap B \cap$	$\begin{array}{c} A \\ A \\ A \\ A \\ B \\ A \\ B \\ B \\ A \\ B \\ A \\ B \\ A \\ B \\ A \\ B \\ B$
	'A or B or Both' 'A and B'	
11. Venn	∈ means ' element of a set ' (a value in	Set A is the even numbers less than
Diagram	the set)	10.
Notation	{ } means the collection of values in the	$A = \{2, 4, 6, 8\}$
	Sel.	Set B is the prime numbers less
	ζ means the universal set (all the	
	A' means (not in set A' (called	$D = \{2, 3, 3, 7\}$ $\Delta \cup B = \{2, 3, 4, 5, 6, 7, 8\}$
	α means not in set A (called complement) A \cup B means 'A or B or	$A \cap B = \{2\}$
	both' (called Union) $A \cap B$ means 'A	
	and B (called Intersection)	
12. AND rule	When two events, A and B, are	What is the probability of rolling a 4
for Probability	independent:	and flipping a Tails?
	$P(A \text{ and } B) = P(A) \times P(B)$	$P(4 \text{ and } Tails) = P(4) \times P(Tails)$
		$=\frac{1}{4} \times \frac{1}{2} = \frac{1}{42}$
13 OR rule	When two events A and B are	<u>6 2 12</u> What is the probability of rolling a 2
for Probability	mutually exclusive	or rolling a 5? $P(2 \text{ or } 5) = P(2) +$
	P(A or B) = P(A) + P(B)	$P(5) - \frac{1}{2} + \frac{1}{2} - \frac{2}{2} - \frac{1}{2}$
14	The probability of an event A	
Conditional	happening given that event R has	2 Deau
Probability	already happened.	Red
	With conditional probability, check if the	
	numbers on the second branches of a	Red 5 Green
	tree diagram changes. For example, if	
	you have 4 red beads in a bag of 9	5 Green Red
	beads and pick a red bead on the first	
	out of 8 beads on the second pick.	4/8 Green

Knowledge organiser Y10 Maths Trigonometry

Кеу	Defini	ition/T	ïps				Example
vocabulary			0.00	450	000	000	N
1. EXACL	cin	0°	<u>30°</u>	45°	60°	90°	30*
Angles in	5111	U	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$		45
Trigonometry	<u> </u>	1	4	$\frac{2}{\sqrt{2}}$	2	0	1 $\sqrt{2}$ $\sqrt{3}$ 2
	003	•	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$		
	tan	0	<u>2</u> 1	1	$\sqrt{2}$		45* 60*
			$\sqrt{3}$	-	v J		1 1
2. Sine Rule	Use w	ith no	n right	angle	e trian	gles.	
	Use w	hen th	e ques	stion in	volves	5 2	/85 5.2cm
	sides	and 2	angle	S.			
	⊢or m	issing	side:	h			
			$\frac{u}{\sin 4}$	$=\frac{v}{\sin v}$	<u>_</u>		$\frac{1}{2}$ $\frac{1}{46}$ x
	For m	issing	angle:	5111	D		<u>x</u> <u>5.2</u>
		0	sin A	sin	B		$\sin 85$ $\sin 46$
			a	= b	,		$x = \frac{5.2 \times 51185}{1000} = 3.75cm$
	Ihere	is an a	ambig	uous (where	sin 46
			o poter	illai ai	B B)	85
	1					1.9m	
	10 mm				1		
			10cm	÷	7		2.4m
			/	6cm/	6cm	n	$\frac{\sin\theta}{10} = \frac{\sin 85}{24}$
		14	46°	/	$-\frac{1}{C}$		$1.9 2.4 1.9 imes \sin 85$
	To find	d the t	wo and	iles us	se sin	e to find	$\sin\theta = \frac{1}{2.4} = 0.789$
	one, a	and the	n sub	tract y	our ar	iswer	$\theta = sin^{-1}(0.789) = 52.1^{\circ}$
	from '	180 to	find th	e othe	r answ	ver.	
3. Cosine	Use w	ith no i	n right	angle	e trian	gles.	85 96
Rule	Use w	hen th		stion in	volves	3	7.8
	For m	anu i issina	angle side	•			
		$a^2 =$	$b^2 + c$	$c^2 - 2l$	bccosA	1	X
	For m	issing	angle:				
		co	<u> </u>	$p^2 + c^2$	$-a^{2}$		$x^2 = 9.6^2 + 7.8^2 - (2 \times 9.6 \times 7.8 \times 0.000)$
		CO:	5А — -	2 <i>b</i>	С		x = 11.8
							\wedge
							7.2cm
							0.000
							<u>8.1cm</u>
							$7.2^2 + 8.1^2 - 6.6^2$
							$\cos\theta = \frac{2 \times 7.2 \times 8.1}{2 \times 7.2 \times 8.1}$
							$\theta = 50.7^{\circ}$

Knowledge Organiser Y10 Representing Data

Key Vocabulary	Definition/Tips	Example		
1. Frequency	A record of how often each value in a	Number of marks	Tally marks	Frequency
Table	set of data occurs	1	JHT 11	7
		2	JHH	5
		3	1111	6
		4	1111	5
		5	Ш	3
		Total		26
2. Bar Chart	Represents data as vertical blocks. x - axis shows the type of data y - axis shows the frequency for each type of data Each bar should be the same width There should be gaps between each bar Remember to label each axis.	14 12 10 8 6 4 2 0 0 0	1 2 3 umber of pets c	4 bwned
3. Types of Bar Chart	Compound/Composite Bar Charts show data stacked on top of each other.	80 70 60 50 40 30 20 10 0 4	E tron Carbon Aluminum	c
	Comparative/Dual Bar Charts show data side by side.	50 40 30 20 10 Jan Feb Dual	ainfall Mar Apr May Month Bar Chart	Key: London Bristol
4. Pie Chart	Used for showing how data breaks		wash	
	 down into its constituent parts. When drawing a pie chart, divide 360° by the total frequency. This will tell you how many degrees to use for the frequency of each category. Remember to label the category that 	If there are 40 p	beople in a	a survey, worth
	each sector in the pie chart represents.	360÷40=9° of th	ne pie cha	rt.

5. Pictogram	Uses pictures or symbols to show the value of the data.	Black 🛱 🛱 🖣
	A pictogram must have a key .	Green \mathbf{F} \mathbf{F} = 4 cars Others \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F}
6. Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data , which is a series of data points spaced over uniform time intervals in time order .	$\begin{array}{c} 14\\ 12\\ 10\\ 8\\ 6\\ 4\\ 2\\ 0\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\end{array}$
7. Two Way Tables	A table that organises data around two categories .	Question: Complete the 2 way table below. Left Handed Right Handed Total Boys 10 58 Girls 58 Total 84 100 Answer: Step 1, fill out the easy parts (the totals)
	using the information given.	Left Handed Right Handed Total Boys 10 48 58 Girls 42 Total 10 84
	Make sure all the totals add up for all columns and rows.	Answer: Step 2, fill out the remaining parts Left Handed Right Handed Total Boys 10 48 58 Girls 6 36 42 Total 16 84 100
8. Box Plots	The minimum, lower quartile, median, upper quartile and maximum are shown on a box plot.	Students sit a maths test. The highest score is 19, the lowest score is 8, the median is 14, the lower quartile is 10 and the upper
	A box plot can be drawn independently or from a cumulative frequency diagram.	quartile is 17. Draw a box plot to represent this information.
		0 10 12 14 16 18 20
9. Comparing Box Plots	 Write two sentences. 1. Compare the averages using the medians for two sets of data. 2. Compare the spread of the data using the range or IQR for two sets of 	'On average, students in class A were more successful on the test than class B because their median score was higher.'
	data. The <u>smaller</u> the range/IQR, the <u>more</u> <u>consistent</u> the data.	'Students in class B were more consistent than class A in their test scores as their IQR was smaller.'
	You must compare box plots in the context of the problem .	

Knowledge Organiser Y10 Summarising Data

Key Vocabulary	Definition/Tips	Example
1. Types of Data	Qualitative Data – non-numerical dataQuantitative Data – numerical dataQuantitative Data – numerical dataContinuous Data – data that can take any numerical value within a given range.Discrete Data – data that can take only specific values within a given range.	Qualitative Data – eye colour, gender etc. Continuous Data – weight, voltage etc. Discrete Data – number of children, shoe size etc.
2. Grouped	Data that has been bundled in to	Foot length, <i>l</i> , (cm) Number of children
Data	categories.	10 ≤ <i>l</i> < 12 5
	Seen in grouped frequency tables.	12 ≤ <i>l</i> < 17 53
	histograms, cumulative frequency etc.	
3. Primary /Secondary Data	Primary Data – collected yourself for a specific purpose.	Primary Data – data collected by a student for their own research project.
	Secondary Data – collected by someone else for another purpose.	Secondary Data – Census data
		used to analyse link between education and earnings.
4. Mean	Add up the values and divide by how many values there are.	The mean of 3, 4, 7, 6, 0, 4, 6 is $\frac{3+4+7+6+0+4+6}{7} = 5$
5. Mean from a Table	 Find the midpoints (if necessary) Multiply Frequency by values or midpoints Add up these values Divide this total by the Total 	Height in cmFrequencyMidpoint $F \times M$ $0 < h \le 10$ 85 $8 \times 5 = 40$ $10 < h \le 30$ 1020 $10 \times 20 = 200$ $30 < h \le 40$ 635 $6 \times 35 = 210$ Total24Ignore!450Estimated Meanheight: $450 \div 24 =$
	If grouped data is used, the answer will	18.75cm
	be an estimate .	
6. Median Value	The middle value.	Find the median of: 4, 5, 2, 3, 6, 7, 6
	Put the data in order and find the middle one. If there are two middle values , find the	Ordered: 2, 3, 4, 5 , 6, 6, 7
	number half way between them by adding them together and dividing by 2.	Median = 5
7. Median	Use the formula $\frac{(n+1)}{2}$ to find the	If the total frequency is 15, the
from a Table	position of the median.	median will be the $\left(\frac{15+1}{2}\right) =$
	n is the total frequency.	

8. Mode	Most frequent/common.	Find the mode: 4, 5, 2, 3, 6, 4, 7, 8,
/Modal Value		4
	Can have more than one mode (called	
	bi-modal or multi-modal) or no mode (if	Mode = 4
	all values appear once)	
9. Range	Highest value subtract the Smallest	Find the range: 3, 31, 26, 102, 37,
	value	97.
	Range is a 'measure of spread'. The	Range = 102-3 = 99
	smaller the range the more consistent	5
	the data.	
10. Outlier	A value that 'lies outside' most of the	12 Outlier
	other values in a set of data.	
	An outlier is much smaller or much	6
	larger than the other values in a set of	4
	data.	2
		0 20 40 60 80 100
11. Lower	Divides the bottom half of the data	Find the lower quartile of: 2, 3, 4, 5,
Quartile	into two halves .	6, 6, 7
	$I Q = Q_1 = \frac{(n+1)}{th} th$ value	$Q_4 = \frac{(7+1)}{2} = 2nd$ value $\rightarrow 3$
	$\frac{1}{4} = \frac{1}{4} th t t d d t d t d t d t d t d t d t d $	$Q_1 = \frac{1}{4}$
12. Lower	Divides the top hair of the data into	Find the upper quartile of: $2, 3, 4, 5, $
Quartile	two naives.	0, <u>0</u> , <i>1</i>
	3(n+1)	3(7+1)
	$UQ = Q_3 = \frac{S(n+1)}{4}th$ value	$Q_3 = \frac{3(7+1)}{4} = 6th$ value $\rightarrow 6$
13.	The difference between the upper	Find the IQR of: 2, 3, 4, 5, 6, 6, 7
Interquartile	quartile and lower quartile.	
Range		$IQR = Q_3 - Q_1 = 6 - 3 = 3$
	$IQR = Q_3 - Q_1$	
	-	
	The smaller the interquartile range,	
	the more consistent the data.	

Knowledge organiser Y10H Graphs and Graph Transformations

Key vocabularv	Definition/Tips	Example
1. Coordinates	Written in pairs . The first term is the x - coordinate (movement across). The second term is the y -coordinate (movement up or down)	A: (4,7) B: (-6,-3) B: (-6,-3) B: (-6,-3)
2. Linear Graph	Straight line graph. The equation of a linear graph can contain an x-term , a y-term and a number .	Example: Other examples: x = y y = 4 x = -2 y = 2x - 7 y + x = 10 2y - 4x = 12
3. Quadratic Graph	A ' U-shaped ' curve called a parabola . The equation is of the form $y = ax^2 + bx + c$, where a , b and c are numbers, $a \neq 0$. If $a < 0$, the parabola is upside down .	$y -1$ $y = x^{2}-4x-5$ -1 5 x
4. Cubic Graph	The equation is of the form $y = ax^3 + k$, where k is an number. If $a > 0$, the curve is increasing. If $a < 0$, the curve is decreasing.	
5. Reciprocal Graph	The equation is of the form $y = \frac{A}{x}$, where <i>A</i> is a number and $x \neq 0$. The graph has asymptotes on the x- axis and y-axis.	y + 1/x
6. Asymptote	A straight line that a graph approaches but never touches.	horizantal asymptote

7. Exponential Graph	The equation is of the form $y = a^x$, where <i>a</i> is a number called the base . If $a > 1$ the graph increases . If $0 < a < 1$, the graph decreases . The graph has an asymptote which is the x-axis .	
8. $y = \sin x$	Key Coordinates: (0,0), (90, 1), (180, 0), (270, -1), (360, 0) <i>y</i> is never more than 1 or less than -1. Pattern repeats every 360°.	y 1.0 90° 180° 270° 360° 450° 540° 630° 7720° 1.0
9. $y = \cos x$	Key Coordinates: (0, 1), (90, 0), (180, -1), (270, 0), (360, 1) <i>y</i> is never more than 1 or less than -1. Pattern repeats every 360°.	10 graph of y = cosine θ 90 180° 270° 360° 450° 540° 630° 720° 1.0
10. $y = \tan x$	Key Coordinates: (0, 0), (45, 1), (135, -1), (180, 0), (225, 1), (315, -1), (360, 0) Asymptotes at $x = 90$ and $x = 270$ Pattern repeats every 360°.	y graph of y = $\tan \theta$ 6 4 2 - 0 -2 -2 -4 -
11. $f(x) + a$	Vertical translation up a units. $\begin{pmatrix} 0 \\ a \end{pmatrix}$	$ \begin{array}{c} f(x),y \\ f(x) + 3 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
12. $f(x + a)$	Horizontal translation <u>left</u> a units. $\begin{pmatrix} -a \\ 0 \end{pmatrix}$	$\int (x+2) \int (x) \int (x-2) \int (x-2$
13. $-f(x)$	Reflection over the x-axis.	-5 (x) MathBits.com
14. $f(-x)$	Reflection over the y-axis.	5 4 3 -2 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

Key vocabulary	Definition/Tips	Example
1. Correlation	Correlation between two sets of data means they are connected in some way.	There is correlation between temperature and the number of ice creams sold.
2. Causality	When one variable influences another variable.	The more hours you work at a particular job (paid hourly), the higher your income <u>from that job</u> will be.
3. Positive Correlation	As one value increases the other value increases .	Positive Correlation
4. Negative Correlation	As one value increases the other value decreases .	Outler Negative Correlation
5. No Correlation	There is no linear relationship between the two.	No Correlation
6. Strong Correlation	When two sets of data are closely linked .	Strong Positive Correlation
7. Weak Correlation	When two sets of data have correlation, but are not closely linked .	Weak Positive Correlation
8. Scatter Graph	A graph in which values of two variables are plotted along two axes to compare them and see if there is any connection between them.	
9. Line of Best Fit	A straight line that best represents the data on a scatter graph.	x x x x x x x x x x x x x x x x x x
10. Outlier	A value that 'lies outside' most of the other values in a set of data. An outlier is much smaller or much larger than the other values in a set of data.	12 10 8 6 4 2 0 0 20 40 60 80 100

Кеу	Definition/Tips	Example
vocabulary		
1.	A visual way to display frequency data	
Histograms	using bars.	Height(cm) Frequency Frequency
	Bars can be unequal in width .	$0 \le h \le 10$ 8 (FD)
	Histograms show frequency density	$10 < h \le 30$ 6 $8 \div 5 = 1.6$
	on the y-axis , not frequency.	$30 < h \le 45$ 15 $6 \div 20 = 0.3$
	Frequency	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Frequency Density = $\frac{1}{Class}$ Width	
2.	The area of the bar is proportional to	A histogram shows information
Interpreting	the frequency of that class interval.	about the heights of a number of
Histograms		plants. 4 plants were less than 5cm
	Frequency = Freq Density	tall. Find the number of plants more
	× Class Width	than 5cm tall.
		FD
		0 0 10 15 20 25 30
		Above 5cm:
		$1.2 \times 10 + 2.4 \times 15 = 12 + 36 = 48$
3. Cumulative	Cumulative Frequency is a running	Cumulative Frequency
Frequency	total. Age Frequency	15
	$0 < a \le 10$ 15	15 + 35 = 50
	$10 < a \le 40$ 35	13 + 35 = 50 50 + 10 = 60
	$40 < a \le 50$ 10	50 + 10 - 00
4. Cumulative	A cumulative frequency diagram is a	40-
Frequency	curve that goes up. It looks a little like	30- CF 20
Diagram	a stretched-out S shape .	10 -
	Plot the cumulative frequencies at the	0
5.0		10 20 30 40 50 Height
5. Quartiles	Lower Quartile (Q1): 25% of the data	40-
Cumulative	is less than the lower quartile. Median (Ω^2) : 50% of the data is less	Value of UQ taken from 33rd = 37
Frequency	than the median	CF Value of Medidan taken from 22nd = 30
Diagram	Upper Quartile (Q3): 75% of the data	Value of LO taken from 11th = 18
	is less than the upper quartile.	
	Interquartile Range (IQR): represents	0
	the middle 50% of the data.	10 20 30 40 50
		IOR = 37 - 18 - 19
L		12n - 37 - 10 - 17

Key Vocabulary	Definition/Tips	Example
1. Area Under a Curve	To find the area under a curve, split it up into simpler shapes – such as rectangles, triangles and trapeziums – that approximate the area.	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
2. Tangent to a Curve	A straight line that touches a curve at exactly one point .	Tangent line
3. Gradient of a Curve	 The gradient of a curve at a point is the same as the gradient of the tangent at that point. 1. Draw a tangent carefully at the point. 2. Make a right-angled triangle. 3. Use the measurements on the axes to calculate the rise and run (change in y and change in x) 4. Calculate the gradient. 	$Gradient = \frac{Change in y}{Change in x} = \frac{16}{2} = 8$
4. Rate of Change	The rate of change at a particular instant in time is represented by the gradient of the tangent to the curve at that point.	Positive rate of change 0 2 4 6 8 Time (s)
5. Distance- Time Graphs	You can find the speed from the gradient of the line (Distance ÷ Time) The steeper the line, the quicker the speed. A horizontal line means the object is not moving (stationary).	Distance (Km)
6. Velocity- Time Graphs	You can find the acceleration from the gradient of the line (Change in Velocity \div Time) The steeper the line, the quicker the acceleration. A horizontal line represents no acceleration, meaning a constant velocity . The area under the graph is the distance .	Velocity (m/s) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2